You are viewing a version of the Ocean Optics Web Book site speciallyformatted for printing.
As seen on the previous page, the RTE is easy to derive. However, it is quite difficult to solve. The 1D, timeindependent RTE is a linear twopoint boundary value problem. That is to say, there are boundary conditions describing the radiance at the top and bottom of the atmosphere or ocean (the two spatial points), and the propagation of radiance within the mediumbetween the boundariesis governed by the linear integrodifferential RTE. In the oceanographic setting, the upper boundary condition specifies the sky radiance incident onto the sea surface. The lower boundary condition specifies how the sea bottom reflects the downwelling radiance. (The "sea bottom" can be a physical bottom, or the deepest depth in the water column at which the RTE needs to be solved to obtain the radiances above that depth.)
Exact Analytical SolutionsExact analytical (i.e., pencil and paper) solutions of the RTE can be obtained only for very simple situations, such as no scattering. There is no function (that anyone has ever found) that gives
where is some function in which you can "plug in" the absorption coefficient, VSF, and other parameters and get back the radiance. This is true even for very simple situations such as homogeneous water with isotropic scattering. Even the conceptually simple geometry of an isotropically emitting point light source in an infinite homogeneous ocean is unsolved. (A very complicated solution for the the scalar irradiance around an isotropically emitting point source with isotropic scattering does exist; see Davison and Sykes (1957), eq. 5.25 or Mobley (1996), Section 9.2.) This may seem surprising because other pointsource problems, such as the electric filed around a point charge or the gravitational field around a point mass, are often very simple. The difference with optics lies in the complications caused by scattering within the medium surrounding the point source (which do not exist for problems like the gravitational field around a point mass). If there is no scattering, the RTE of Eq. (9) on the previous page reduces to just
This is a linear, first order, ordinary differential equation, which is easily solved (see any text on differential equations, e.g., Rainville (1964), page 36). If the medium is homogeneous, so that the absorption coefficient and source function do not depend on distance , the solution of Eq. (1) is (dropping the wavelength and direction arguments for brevity)
where is the initial radiance at distance . In sourcefree water, and the solution is a simple exponential decay of the initial radiance with distance. This result was derived in another way in the discussion on measuring IOPs; see Eq. (3) that page. Note that for great distances, , the radiance depends only on the source function and the absorption coefficient: . This result for the asymptotic behavior of the radiance with distance also holds when scattering is present, as shown on the page for an analytical asymptotic solution for internal sources.
Approximate Analytical SolutionsA number of approximate analytical solutions to the RTE can be derived after simplifying the RTE in various ways. One of these approximate solutions is the singlescattering approximation (SSA). This solution is developed by assuming that the water in homogeneous, the sea surface is level, the sun is a point source in a black sky, there are no internal sources, and only singlescattering of photons is considered. The quasisinglescattering approximation (QSSA) is a further simplification of the SSA. These are discussed in detail in Level 2 and in Gordon (1994). A much more complicated solution including secondorder scattering (i.e., including photons that have been scattered twice) is developed in Walker (1994), Section 26. These approximate solutions of the RTE are useful for isolating the main factors influencing underwater radiances. However, the solutions depend on various simplifying assumptions and the predicted radiances are typically accurate to a few tens of percent at best, and can be off by an order of magnitude.
Numerical SolutionsIf accurate solutions of the RTE are to be obtained for realistic oceanic conditions, numerical methods must be used to solve the RTE. Many such methods have been developed. Some of these solution techniques have been tailored to specific environments, such as stellar or planetary atmospheres, and are not commonly used in oceanography. The numerical methods most commonly employed in oceanographic radiative transfer, and their salient characteristics, can be summarized as follows:
Because of their simplicity and generality, Monte Carlo methods are widely used to solve the RTE in fields as diverse as oceanography, atmospheric sciences, astronomy, medical physics, and nuclear engineering. The tradeoff for their simplicity and generality is long computer run times for many problems. Nevertheless, Monte Carlo methods warrant a chapter of their own. The scattering phase functions for atmospheric aerosols are not as highly peaked at very small scattering angles as are those for oceanic particles. Discrete ordinates can handle aerosol phase functions well and is often used in atmospheric optics, but is not much used for underwater calculations because of the need to resolve highly peaked phase functions and to have many layers if the IOPs vary greatly with depth. Invariant imbedding is the solution technique used by the HydroLight numerical model, which is widely used in oceanography. Each of these techniques gives the same answer for the same inputs and boundary conditions for the RTE, for problems where all three techniques are applicable, as can be seen in the model comparison study of Mobley et al. (1993). They differ only in their internal mathematics and the resulting computer run times, and welldebugged and validated computer programs exist for each. In this sense, solving the RTE in the oceanographic setting can be considered a "solved problem."

