
This page shows how polarizied light is reflected and transmitted by a level air-water
surface. The geometry is the same as for the Level 1 discussion of Fresnel reflectance and
transmittance of unpolarized light by a level sea surface. Now, however, the state of polar-
ization of the incident light is described by a four-component Stokes vector, as described on
the page on Stokes Vectors. Consequently, reflection and transmission by the surface are
described by 4× 4 matrices.

The state of polarization of a light field is specified by the four-component Stokes vector,
whose elements are related to the complex amplitudes of the electric field vector E resolved
into directions that are parallel (E‖) and perpendicular (E⊥) to a conveniently chosen ref-
erence plane. However, there are two versions of the Stokes vector seen in the literature,
and these two versions have different units and refer to different physical quantities. The
coherent Stokes vector describes a quasi-monochromatic plane wave propagating in one exact
direction, and the vector components have units of power per unit area (i.e., irradiance) on
a small surface element perpendicular to the direction of propagation. The diffuse Stokes
vector describes light propagating in a small set of directions surrounding a particular di-
rection and has units of power per unit area per unit solid angle (i.e., radiance). It is the
diffuse Stokes vector that appears in the vector radiative transfer equation. The differences
in coherent and diffuse Stokes vectors are rigorously discussed in (Mischenko, 2008).

For either air- or water-incident light, Si denotes the diffuse Stokes vector of the incident
light, Sr is the reflected light, and St is the transmitted light. Angles θi, θr, and θt are the
incident, reflected, and transmitted directions of the light propagation measured relative to
the normal to the surface. For a level surface, Si, Sr, and St all lie in the same plane.

There are four matrices to describe reflection and transmission: Raw describes how air-
incident light is reflected by the water surface back to the air, T aw describes how air-incident
light is transmitted through the surface into the water, Rwa reflects water-incident light
back to the water, and Twa transmits light from the water into the air. However, because Si,
Sr, and St are coplanar, scattering by the level surface does not involve rotation matrices
as does scattering within the water body. (Or, from another viewpoint, the incident and
final meridian planes and the scattering plane are all the same, the rotation angles between
meridian and scattering planes are 0, and the rotation matrices reduce to identity matrices.)

The reflection and (especially) transmission of polarized light by a dielectric surface
such as a level water surface are rather complicated processes, and the literature contains
a number of different (and, indeed, sometimes incorrect) mathematical formulations of the
equations. The formulas given in (Garcia, 2012) are used here. Note, however, that although
the equations in (Garcia, 2012) are correct, some of his derivations and interpretations are
incorrect, as explained by (Zhai, et al. (2012). Both papers must be used to understand the
equations now presented. The equations in Garcia will be referenced by (G21) and so on;
the corresponding equations in (Zhai et al. (2012) will be referenced as (Z5), etc.

The reflectance and transmittance matrices have a general formulation for the interface
between any two dielectric media a and b. Let na be the index of refraction of medium a and
nb be that of medium b. In general na and nb are complex numbers, but for the air-water
surface we take nair = 1 and nwater ≈ 1.34 to be real indices of refraction. For reflection, the
reflected angle θr equals the incident angle θi. For transmission from a to b, the transmitted
angle is given by Snel’s law, na sin θa = nb sin θb, or
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θb = arcsin

(
na sin θi
nb

)
. (1)

For water-incident light, na = nwater and nb = nair, in which case the transmitted angle
becomes undefined beyond the critical angle for total internal reflection, which for water is
θc = arcsin(1/nwater) ≈ 48 deg. For water-incident angles greater than θc the incident light
is totally reflected back to the water and no light is transmitted to the air.

Let Rab denote the reflectance matrix for light incident from medium a and reflected back
by medium b. Rab thus represents either Raw or Rwa. Likewise, let T ab denote the reflectance
matrix for light incident from medium a and transmitted through the surface into medium
b. T ab thus represents either T aw or Twa.

With these preliminaries, the reflectance matrix Rab is (G10)
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 . (2)

Here <{R‖R∗⊥} denotes the real part of R‖R
∗
⊥ and ={R‖R∗⊥} is the imaginary part.

The transmission matrix T ab is (G11 or Z3)

T ab = fT
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The components of these equations are given by (G7):

R‖ = &
nb cos θa − na cos θb
nb cos θa + na cos θb

(4)

R⊥ = &
na cos θa − nb cos θb
na cos θa + nb cos θb

(5)

T‖ = &
2na cos θa

nb cos θa + na cos θb
(6)

T‖ = &
2na cos θa

na cos θa + nb cos θb
. (7)

The factor fT is defined below in Eq. (23). In general, the indices of refraction are complex
numbers and these equations must be used. However, for real indices of refraction, the
matrix elements can be simplified at the expense of having a special case for water-incident
angles greater that the critical angle.

Define
nab =

na

nb

and nba =
nb

na

. (8)
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Then for the case of air-incident light, i.e., na ≤ nb, or water-incident light with the incident
angle less than the critical angle, i.e., na > nb and θa < θc, the equations yield the real forms
(G14 and G15)

R‖R
∗
‖ = &

(
cos θa − nab cos θb
cos θa + nab cos θb

)2

(9)
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∗
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)2

(10)
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)(
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)
(11)

={R‖R∗⊥} = & 0 (12)
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)2
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(15)

={T‖T ∗⊥} = & 0 . (16)

It should be noted that for the case of normal incidence, θi = 0, both R‖R
∗
‖ and R⊥R

∗
⊥

reduce to
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‖ = R⊥R

∗
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(
nb − na
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)2

. (17)

This gives a reflectance of Rab(θi = 0) = 0.021 for nwater = 1.34, for both air- and water-
incident light.

For the case of total internal reflection, i.e., na > nb and θa ≥ θc, the following equations
are to be used (G22):

R‖R
∗
‖ = & 1 (18)

R⊥R
∗
⊥ = & 1 (19)

<{R‖R∗⊥} = &
2 sin4 θa

1− (1 + n2
ba) cos2 θa

− 1 (20)

={R‖R∗⊥} = &− 2 cos θa sin2 θa
√

sin2 θa − n2
ba

1− (1 + n2
ba) cos2 θa

(21)

and all elements of the transmission matrix elements are 0:

T ab = Twa = 0 . (22)

Finally, the all-important transmission factor fT in Eq. (3) is given by

fT = n3
ba

(
cos θb
cos θa

)
(for diffuse Stokes vectors) , (23)
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when computing the transmittance for diffuse Stokes vectors. These equations give every-
thing needed to describe reflection and transmission of polarized light by a level sea surface.

Figure figure1 shows the Raw and T aw matrices as a function of incident angle θi for
nair = 1 and nwater = 1.34. The (1,1) matrix elements are shown in the upper-left plot, and
the (4,4) elements are in the lower-right plot. The red curves are Raw(θi) and the blue curves
are T aw(θi). The reflectance curve for Raw(1, 1) is the Fresnel reflectance for unpolarzed light
as given in the section on Fresnel formulas for unpolarized light: it starts at 0.021 for normal
incidence and nwater = 1.34, and rises to 1 at grazing incidence. The transmission curve for
Taw(1, 1) on the other hand may look incorrect because it has values greater than one. Its
maximum value at normal incidence is

Taw(1, 1) =
4n3

b

(1 + nb)2
= 1.758 (24)

However, this value is indeed correct and is a consequence of the fact that we are now dealing
with a diffuse Stokes vector with units of radiance, and the n2 law for radiance applies. The
curves in Fig.(figure1) agree exactly with the corresponding plots in (Garcia, 2012) (his Figs.
1-3).

If we were dealing with coherent Stokes vectors with units of irradiance, then the fT
factor of Eq. (23) would be

fT = nba
cos θb
cos θa

(for coherent Stokes vectors) . (25)

The transmittance for normal incidence then would be (4nb)/(1 + nb)
2 = 0.979, which with

the reflectance sums to one (and also sums to one for all other incident angles). As noted
elsewhere, it is the Law of Conservation of Energy, not the law of conservation of radiance.

The vertical dotted line in Fig. (figure1) shows the location of Brewster’s angle,

θBrew = arctan(nb) (26)

which is arctan(1.34) = 53.3 deg in the present case. At this angle, Raw(1, 2) = Raw(2, 1) =
−Raw(1, 1), and Raw(3, 3) = Raw(4, 4) = 0. In the present case Raw(1, 1) ≈ 0.04 at θBrew,
and the reflection process Sr = Raw(θi = θBrew)Si becomes

Sr =


0.04&− 0.04&0&0
−0.04&0.04&0&0

0&0&0&0
0&0&0&0



I
0
0
0

 =


0.04I
−0.04I

0
0

 . (27)

Thus, at Brewster’s angle, unpolarized incident radiance is totally horizontally polarized
upon reflection.

It should also be noted that the non-zero Taw(2, 1) means that unpolarized radiance
becomes partly horizontally polarized upon transmission through the surface.

Figure (figure2) shows Raw and T aw as reduced scattering matrices, i.e. after dividing
each element by its (1,1) component. These plots show more clearly the behavior of the Raw

matrix elements at Brewster’s angle. These curves agree exactly with the corresponding
plots in (Kattawar and Adams (1989) (their Fig. 4).
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Figure 1: Reflectance and transmittance matrices as functions of the incident angle θi for air-
incident radiance. Raw is in red and T aw is in blue. The vertical dotted line at θi = 53.3 deg
is Brewster’s angle.
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Figure 2: Reduced reflectance and transmittance matrices for air-incident radiance [the
reflectance and transmittance matrices of Fig.(figure1) normalized by their (1,1) elements].
The vertical dotted line is Brewster’s angle.

6



Figure (figure3) shows Rwa and Twa. The vertical dotted line is at the critical angle for
total internal reflection, which in the present case is θc = 48.3 deg. For angles less than
the critical angle, the transmission is never more than about 0.54. This again shows the
n-squared law for radiance. In going from water to air, the in-water radiance is decreased by
a factor of 1/n2

water when crossing the surface because the solid angle in air is greater than
that in water by a factor of n2

water. The (1,1) elements show that beyond the critical angle
there is no transmission and total reflection. These curves agree with the corresponding
plots in (Garcia (2012) (his Figs. 4-6).

Figure (figure4) shows the reduced water-to-air matrices. These curves agree with the
corresponding plots in (Kattawar and Adams (1989) (their Fig. 5. The signs of the Twa(3, 4)
and Twa(4, 3) elements are reversed in the original Fig. 5, which had a sign error.).

The non-zero matrix elements of course depend on incident angle as seen above, but also
depend weakly on the wavelength via the wavelength dependence of nwater.
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Figure 3: Reflectance and transmittance matrices as functions of the incident angle θi for
water-incident radiance. Rwa is in red and Twa is in blue. The vertical dotted line is the
critical angle for total internal reflectance.
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Figure 4: Reduced reflectance and transmittance matrices for air-incident radiance [the
reflectance and transmittance matrices of Fig.(figure3) normalized by their (1,1) elements].
The 34 and 43 elements are the reverse of Fig. 5 in (Kattawar and Adams (1989) due to a
sign error in the original paper.
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