
Chapter 2


Photometry


In general we must use the well defined and objectively measured 
quantities of geometrical radiometry in quantitative studies of radiative 
transfer.  However, there are times when, either unavoidably or by choice, the 
human eye becomes one of our instruments.  Such is the case when we wish 
simply to observe for pleasure the beautiful colors of nature or when, even 
today, someone uses Secchi disk observations as a semi-quantitative measure 
of the clarity of a natural water body (Preisendorfer, 1986).  In other instances, 
the eye-brain system may be the preferred instrument, as in visual searches for 
underwater objects.  We therefore require some knowledge of how the human 
visual system responds to radiant energy.  This takes us into the domain of 
photometry and, more generally, colorimetry.  For our present purpose, 
geometrical photometry is defined as the study of the human visual response 
to the quantities of geometrical radiometry. 

2.1 The Photopic Luminosity Function

Not all wavelengths of light evoke the same sensation of brightness in 
the human eye-brain system.  For example, suppose a person with "normal" 
eyesight is exposed to monochromatic radiance of wavelength 550 nm and 

!1magnitude 104 W m!2 sr  nm!1 (recall from Chapter 1 that this is comparable 
in magnitude to the sun's spectral radiance at this wavelength).  The person 
will "see" a bright yellowish-green light.  If the person is exposed to light of 

!1the same radiance, 104 W m!2 sr  nm!1, but of wavelength 300 nm, the person 
will not "see" anything, since the eye is not sensitive to this wavelength in the 
ultraviolet.  However, if the exposure lasts long enough, permanent and severe 
damage will be done to the eye by the ultraviolet radiant energy. 

This relative ability of radiant energy to evoke differing sensations of 
brightness in the human observer is described by the photopic luminosity 
function (8), which is plotted in Fig. 2.1 and tabulated in Table 2.1.  This 
function is an empirically derived composite based on visual response studies 
of numerous humans.  It therefore has the same statistical validity 
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Fig. 2.1.  Photopic (bright light) and scotopic (dim light) luminosity functions. 

as the "average American male, age 30."  Particular individuals can have 
responses that vary considerably from the mean response.  Nevertheless, the 
function serves as a reasonable definition of the eye response of a standard 
photometric observer.  Suppose, for example, that monochromatic radiance 

!1 !1)L(8=500 nm) (blue-green light) of some given magnitude (in W m!2 sr  nm
evokes a certain qualitative sensation of "brightness" in the eye.  Then from 

(8) we see that in order to produce the same sensation of brightness with red 
light of wavelength 650 nm requires 0.323/0.107 . 3 times the radiance, i.e. 
L(8=650) . 3×L(8=500). 

The sensitivity of the eye shifts toward the blue end of the spectrum in 
dim light; the scotopic luminosity function of Fig. 2.1 shows the relative 
response curve for this "night vision" case.  The eye is most sensitive in bright 
light to a wavelength of 555 nm, and to a wavelength of 507 nm in dim light. 
Since most observation of natural waters takes place in daylight, we shall need 
only the photopic (bright light) response curve.  However, any of the results 
developed below using the photopic luminosity function can be reformulated 
for the dim light case by simply replacing the photopic function by the 
scotopic function. 
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Table 2.1. The standard photopic luminosity function and 
its integral, 

8 I(8) 8 I(8) 
(nm) (nm) (nm) (nm) 

380 0.0000 0.000 580 0.8700 68.703 
390 0.0001 0.000 590 0.7570 77.403 
400 0.0004 0.001 600 0.6310 84.973 
410 0.0012 0.005 610 0.5030 91.283 
420 0.0040 0.017 620 0.3810 96.313 
430 0.0116 0.057 630 0.2650 100.123 
440 0.0230 0.173 640 0.1750 102.773 
450 0.0380 0.403 650 0.1070 104.523 
460 0.0600 0.783 660 0.0610 105.593 
470 0.0910 1.383 670 0.0320 106.203 
480 0.1390 2.293 680 0.0170 106.523 
490 0.2080 3.683 690 0.0082 106.693 
500 0.3230 5.763 700 0.0041 106.775 
510 0.5030 8.993 710 0.0021 106.816 
520 0.7100 14.023 720 0.0011 106.837 
530 0.8620 21.123 730 0.0005 106.848 
540 0.9540 29.743 740 0.0003 106.853 
550 0.9950 39.283 750 0.0001 106.856 
560 0.9950 49.233 760 0.0001 106.856 
570 0.9520 59.183 770 0.0000 106.857 

2.2 The Lumen

The photopic luminosity function gives the relative sensitivity of the 
human eye to different wavelengths.  It remains to set an absolute magnitude 
to this sensation, and this is the task of the lumen, abbreviated "lm." To 
determine the luminous content of a sample of radiant power we need a 
conversion factor Km, of units lumen per watt, which can convert spectral 
radiant power (in watts) into luminous power (in lumens)  We therefore need 
some object of known and reproducible brightness as our absolute standard for 
luminosity.  The object used is the surface of a hot platinum body at the 
temperature (2042 K) where it changes from liquid to solid at atmospheric 
pressure. By definition such a surface has a luminance 



43 2.2 The Lumen 

(the photopically averaged radiance) of 6×105 lumens per square meter per 
steradian, that is 

(2.1) 

!1Here L(8) is the spectral radiance of the melting platinum (in W m!2 sr  nm!1). 
Notice that we have replaced watts by lumens in the transition from radiance 
to luminance.  The seemingly arbitrary magnitude of 6×105 is tied by historical 
precedent to an earlier "standard candle" definition of the lumen.  We can 
determine the radiance L(8) of melting platinum for each 8, because platinum 
at such a temperature and under controlled conditions takes on the appearance 
of a complete radiator (a black body).  The celebrated Planck's law for 
blackbody radiation gives the spectral radiance Lb(8;T) of a complete radiator 
at wavelength 8 (here in meters) and  absolute temperature T (in Kelvins) as 

(2.2)


where c1 = 1.191×10!16 W m2 sr!1 and c2 = 1.439×10!2 m K. Note that the 
wavelength interval in Eq. (2.2) is expressed in units of m!1, since 8 is in 
meters. Thus Eq. (2.1) becomes 

(2.3) 

This integral can be evaluated by use of Eq. (2.2); the result is 

Solving Eq. (2.3) for Km then yields 

K  = 683 lm W!1. (2.4)m

The conversion factor K  is called the maximum luminous efficacy. m

We note in passing that if the integral in Eq. (2.3) is evaluated with the 
scotopic luminosity function for (8), the resulting K  is 1754 lm W!1. Thusm

the dark-adapted eye is about two and one half times as efficient at converting 
radiant power into a visual sensation, as is the bright-light-adapted eye. 

Table 1.1 shows the candela as the SI base unit of luminous intensity. 
By definition "the candela is the luminous intensity, in a given 
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direction, of a source which is emitting monochromatic radiant energy of 
frequency 540×1012 Hz and whose radiant intensity in that direction is 1/683 
W sr!1." The lumen is then a derived quantity, which by definition is 1 lm / 
1 cd sr.  These definitions are not particularly enlightening, and so for 
pedagogic reasons we have presented our discussion of photometry as though 
the lumen were the photometric base unit.  Unsuccessful attempts have been 
made to have the lumen adopted as the SI base unit; the proposed definition 
being "the lumen is the luminous power of monochromatic radiant energy 
whose radiant power is 1/683 W and whose frequency is 540×1012 Hz." This 
frequency corresponds to 8 = 555 nm for light in a vacuum. 

2.3 Luminance

Having determined the conversion factor Km, we can now give a 
precise definition of the capability of a given radiance distribution to evoke the 
physiological sensation of brightness.  If L( ; ;8) is a given spectral radiance 
defined over the entire spectrum 0 # 8 < 4, then the corresponding luminance 
is denoted by Lv( ; ) and is defined by

(2.5) 

Luminance is the quantity that most closely corresponds to the subjective 
concept of brightness. 

There is no IAPSO recommended notation for photometric quantities. 
International standards organizations recommend using the same set of 
symbols for radiometirc and photometric  quantities, but differentiating these 
quantities with a subscript e (for energy) for radiometric quantities and a 
subscript v (for visual) for photometric quantities, if there is a possibility of 
confusion.  We shall include the v subscript on photometric quantities, but 
omit the e on radiometric quantities. 

Examples 

Consider a light source that generates a constant spectral radiance L(8) 
= Lo over the wavelength interval 300 nm # 8 # 800 nm, and which gives L(8) 
= 0 outside this  interval.  Then the luminance of this source is 
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!1 !1As always, L  has units of W m!2 sr  nm . The value of the second  integralo

was taken from the last line of column 6 in Table 2.1. 
As another example of using Eq. (2.5), consider a light source that 

!1generates a radiance of L = 1000 W m!2 sr  nm!1 over an interval of )81 = 10 
!1 !1nm centered at 81 = 450 nm, a radiance of L = 500 W m!2 sr  nm  over an 

interval of )82 = 5 nm centered on 82 = 600 nm, and L = 0 otherwise.  Then 
the luminance L  of this source is v

Here the values for (450) and (600) have been taken from Table 2.1.
Table 2.2 displays some typical luminances seen in nature. 

Table 2.2. Typical luminances. 

Luminance
 Source (lm m!2 sr!1 = cd m!2) 

solar disk, above the atmosphere 2×109 

solar disk, at earth's surface, sun near the zenith 1×109 

melting platinum 6×105 

60 W frosted light bulb 1×105 

sunlit snow surface 1×104 

standard fluorescent light 8×103 

full moon's disk 6×103 

clear blue sky, directions away from the sun 3×103 

heavy overcast, zenith direction 1×103 

twilight sky 3 
clear sky, moonlit night 3×10!2 

overcast sky, moonless night 3×10!5 
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2.4 From Radiometry to Photometry 

The transition from radiance to luminance, expressed by Eq. (2.5), can 
be repeated systematically for each radiometric quantity.  We first define a 
general integral, the radiometric-photometric transition operator, by writing 

(2.6) 

In this notation, Eq. (2.5) reads 

The operator (2.6) is the general connection between radiometry and 
photometry.  It permits all of the radiometric quantities developed in Chapter 
1 to be carried over to the photometric context, without the necessity of any 
further geometrical argument. 

Consider, for example, the effect of Y[@] operating on the spectral 
downward plane irradiance Ed(8) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 

We have employed Eq. (2.6) in going from Eq. (2.7a) to (2.7b), recalled Eq. 
(1.23) in going to Eq. (2.7c), exchanged the order of integration in going to Eq. 
(2.7d), and used Eq. (2.5) in going to Eq. (2.7e).  In Eq. (2.7a) we see how the 
downward illuminance Edv (in lumens per square meter) is obtained from the 
spectral downward irradiance Ed (in watts per square meter per nanometer). 
Moreover, we see in Eq. (2.7e) that illuminance and luminance bear the same 
functional relation to each other as do irradiance and radiance. 
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Table 2.3. Summary of photometric concepts. K is the radiometric-
photometric transition operator defined in Eq. (2.6).  (Units can be 

converted to SI units by using 1 lm / 1 cd sr.) 

Concept Units Symbol Definition 

luminous energy lm s Qv Qv / K[Q] 
luminous power lm = cd sr Mv K[M] 
luminous intensity lm sr!1 = cd Iv K[I] 
luminance lm m!2 sr!1 Lv K[L] 
plane illuminance lm m!2 Ev K[E] 
scalar illuminance lm m!2 Eov K[Eo] 
luminous exitance lm m!2 Mv K[M] 

Table 2.3 summarizes the common photometric concepts on the same 
format as Table 1.5, which summarized the progenitor radiometric concepts. 
All other radiometric quantities, such as the vector irradiance, have their 
photometric counterparts, even if not shown in Table 2.3.  The "field" and 
"surface" interpretations carry over into photometry.  Thus the family of 
photometric concepts can be organized in a manner exactly analogous to the 
display of radiometric concepts in Fig. 1.8.  Note finally that, owing to the 
linearity of the operator (2.6), any linear relation between radiometric 
quantities has a corresponding relation in the photometric setting.  For 
example, the cosine law for irradiance becomes the cosine law for illuminance; 
the radiance invariance law becomes the luminance invariance law, and so on. 

Older photometric literature contains a bewildering menagerie of units 
– footcandles, phots, stilbs, talbots, blondels, luxes, lamberts, and the like. 
Meyer-Arendt (1968) defines these non-SI units and presents handy tables of 
conversion factors. 

2.5 Colorimetry 

Colorimetry is that branch of science concerned with specifying 
numerically the color of a sample of radiant power M(8) defined over the 
electromagnetic spectrum 0 # 8 < 4. We now show how to compute and 
graphically display the color of an underwater scene or a color view of a 
natural water body seen from above. 
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For this purpose we adopt the widely used standard C.I.E. (Commission 
Internationale de L'Eclairage) color coordinate system, within which any 
sample of a spectral radiometric quantity can be located and assigned a unique 
color, in a manner to be explained below.  By coupling the concepts of 
radiative transfer theory to the C.I.E. color coordinate system, an accurate, 
quantitative basis for the description and prediction of color phenomena is 
achieved. 

The quantitative description of color 

The C.I.E. color coordinate system is easily understood by analogy 
with vector analysis.  Consider the resolution of a position vector  in a three-
dimensional, cartesian coordinate system defined by , , and . The vector

 has position components x1, x2, and x3 given by 

(2.8) 

where @  is the dot product between and , etc. Finding (x1,x2,x3) is 
known as the analysis of in the given coordinate system. The synthesis of 
refers to the recovery of  from its components: 

(2.9) 

We can perform such an analysis and synthesis not only on a position 
vector , but also on any spectral radiometric function F(8) defined over the 
electromagnetic spectrum.  Instead of the , , and unit vectors, we now 
use the dimensionless tristimulus functions , , and as adopted 
by the C.I.E. in 1936.  These tristimulus functions are shown in Fig. 2.2 and 
are tabulated in Table 2.4.  The  and   functions are empirically 
determined, as is . The forms of these three functions result from the fact 
that the color receptors of the normal human eye (the cones) come in three 
distinct types, each of which is sensitive to only a part of the visible spectrum. 
Some of these receptors are most sensitive to red wavelengths, as reflected in 

.  Those receptors most sensitive at green wavelengths determine , 
and the blue-sensitive receptors determine . It is this structure of the eye 
as a red-green-blue discriminator that, for example, enables a color television 
to produce the sensation of yellow in the viewer's eye-brain system by emitting 
roughly 
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Fig. 2.2. The C.I.E. 1931 tristimulus functions. 

equal parts of red and green (but no yellow) light.  The green tristimulus 
function  is by definition identical to the photopic luminosity function of 
Section 2.1.  This convenient choice for  results in  and being 
somewhat different than the true spectral sensitivities of the associated cone 
cells. 

The dot products of Eq. (2.8) are now replaced by the integrals 

(2.10a) 

(2.10b) 

(2.10c) 

Here K  = 638 lm W!1 is the maximum luminous efficacy determined in m

Section 2.2. Since is the photopic luminosity function, Y defined in Eq. 
(2.10b) is the photometric quantity associated with the radiometric quantity 
F(8).  If we take F(8) as the radiance L(8), then Y is just the luminance L , and v

so on. 
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Table 2.4.  The CIE 1931 tristimulus, or color-matching, functions.a 

8 
(nm) (nm) 

360 0.0001 0.0000 0.0006 580 
370 0.0004 0.0000 0.0019 590 
380 0.0014 0.0000 0.0201 600 
390 0.0042 0.0001 0.0201 610 
400 0.0143 0.0004 0.0679 620 
410 0.0435 0.0012 0.2074 630 
420 0.1344 0.0040 0.6456 640 
430 0.2839 0.0116 1.3856 650 
440 0.3483 0.0230 1.7471 660 
450 0.3362 0.0380 1.7721 670 
460 0.2908 0.0600 1.6692 680 
470 0.1954 0.0910 1.2876 690 
480 0.0956 0.1390 0.8130 700 
490 0.0320 0.2080 0.4652 710 
500 0.0049 0.3230 0.2720 720 
510 0.0093 0.5030 0.1582 730 
520 0.0633 0.7100 0.0782 740 
530 0.1655 0.8620 0.0422 750 
540 0.2904 0.9540 0.0203 760 
550 0.4334 0.9950 0.0087 770 
560 0.5945 0.9950 0.0039 780 
570 0.7621 0.9520 0.0021 sum 

0.9163 
1.0263 
1.0622 
1.0026 
0.8544 
0.6424 
0.4479 
0.2835 
0.1649 
0.0874 
0.0467 
0.0227 
0.0114 
0.0058 
0.0028 
0.0014 
0.0007 
0.0003 
0.0002 
0.0001 
0.0000 

10.684 

0.8700 0.0017 
0.7570 0.0011 
0.6310 0.0008 
0.5030 0.0003 
0.3810 0.0002 
0.2650 0.0001 
0.1750 0.0000 
0.1070 0.0000 
0.0610 0.0000 
0.0320 0.0000 
0.0170 0.0000 
0.0082 0.0000 
0.0041 0.0000 
0.0021 0.0000 
0.0011 0.0000 
0.0005 0.0000 
0.0003 0.0000 
0.0001 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 

10.686 10.679 

a.  Condensed from Wyszecki and Stiles (1982). Copyright 1982 by John 
Wiley & Sons, Inc. Reproduced by permission. 

The integrals of Eq. (2.10) analyze a given spectral radiometric 
function F(8) into (X,Y,Z) = (red, green, blue) components. The corresponding 
synthesis formula gives the color or chromaticity of F(8): 

�(F) is a function of wavelength designed to give a very close visual color 
match to the eye-brain sensation produced by the original F(8). The important 
point to note here is that although F(8) can be a completely 
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arbitrary function of 8, its color �(F) is the linear superposition of weighted 
amounts of standardized red, green and blue radiant power samples.  The 
weights X, Y and Z are called the color components of F, and the ordered triple 
(X, Y, Z) is the associated color vector.  Because the tristimulus functions are 
designed for matching the colors of radiant samples F(8), they are sometimes 
called the color-matching functions. 

For a given light field in nature, different radiometric functions F(8) 
describing that light field in general have different color components.  For 
example, if we look through a narrow tube pointed straight down at the sea 
surface, i.e. if we take the radiance L( ;8) with = !  as F(8), we may 
perceive a deeper blue than if we remove the tube and allow our eyes to 
receive photons traveling in any upward direction, in which case we are using 
an irradiance for F(8). Indeed, the 1931 C.I.E. tristimulus functions are 
designed for color matching when the field of view is only a few degrees. If 
the field of view is larger than 10o, slightly different tristimulus functions are 
recommended. 

When working with position vectors , a special place is reserved for 
vectors of unit length, namely the unit sphere =. In color specification, the 
chromaticity plane, represented by the largest triangle in Fig. 2.3, is the 
analogous construction.  This plane has the property that for all points  (x, y, 
z) lying on it, x + y + z = 1. If (X, Y, Z) is a color vector, then the vector 

(2.11) 

lies on the chromaticity plane.  We call x, y, and z the chromaticity components 
or coordinates of F(8). Since X, Y and Z are non-negative, only the part of the 
chromaticity plane lying in the first octant is needed in colorimetry.  Observe 
also that since x + y + z = 1, only two of the three numbers x, y, z are needed 
to locate a point on the plane.  By convention we use x and y.  By projecting 
all color vectors (X, Y, Z) onto the chromaticity plane as illustrated in Fig. 2.3, 
we are in effect normalizing the photometric correspondent of F(8). For 
example, we are normalizing luminances if F is radiance. This normalization 
separates the attribute of brightness from that of color.  Now that the 
chromaticity plane has been defined, we can simply project it down onto the 
x-y plane – that is, plot only the x and y values – in order to generate a 
convenient graphical display of color information. 

Suppose we have a sample of radiance that is independent of 8 over the 
region 360 nm # 8 # 780 nm [where , , and are nonzero], and 
zero elsewhere.  Then from Eq. (2.10), 
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Fig. 2.3. The chromaticity plane, the spectrum locus, and its projection onto 
the - plane. 

Here we have used the  values from Table 2.4, which are consistent with 
a value of )8  = 10 nm. Likewise, Y = Z = 7.3×104 L. Then by Eq. (2.11) we 
get x = y = z = 1/3 as the chromaticity coordinates of this radiance sample. 
Wavelength-independent radiance has the visual appearance of pure white 
light.  The white-light point (x,y) = (1/3,1/3) is the central base of operations in 
the practical task of specifying colors. 

If we next compute the chromaticities of all the pure monochromatic 
colors of the spectrum, we sweep out the horseshoe-shaped curve shown in 
Fig. 2.3. This curve, or its projection in the x-y plane, is called the 
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spectrum locus. The x-y projection of the curve starts near the point (x,y) = 
(0.176, 0.005) (violet), sweeps around to (0.074, 0.834) (green), and ends up 
near (0.735, 0.265) (red).  We close the spectrum locus by drawing a straight 
line, the purple line, between the red and violet points. The closed region so 
formed in the x-y plane is called a C.I.E. standard chromaticity diagram.  Table 
2.5 gives the chromaticity coordinates for the pure colors.  [These coordinates 
can be found from the entries of Table 2.4 by summing across for each 8 and 
dividing this sum into , , and .] 

Table 2.5.  Chromaticity coordinates for the spectrum locus (the pure colors).a 

x y z 8 x y z 
(nm) (nm) 

360 0.176 0.005 0.819 580 0.512 0.487 0.001 
370 0.175 0.005 0.820 590 0.575 0.424 0.001 
380 0.174 0.005 0.821 600 0.627 0.373 0.000 
390 0.174 0.005 0.821 610 0.666 0.334 0.000 
400 0.173 0.005 0.822 620 0.692 0.308 0.000 
410 0.173 0.005 0.822 630 0.708 0.292 0.000 
420 0.171 0.005 0.824 640 0.719 0.281 0.000 
430 0.169 0.007 0.824 650 0.726 0.274 0.000 
440 0.164 0.011 0.825 660 0.730 0.270 0.000 
450 0.156 0.018 0.826 670 0.732 0.268 0.000 
460 0.144 0.030 0.826 680 0.733 0.267 0.000 
470 0.124 0.058 0.818 690 0.735 0.265 0.000 
480 0.091 0.133 0.776 700 0.735 0.265 0.000 
490 0.045 0.295 0.660 710 0.735 0.265 0.000 
500 0.008 0.539 0.453 720 0.735 0.265 0.000 
510 0.014 0.750 0.236 730 0.735 0.265 0.000 
520 0.074 0.834 0.092 740 0.735 0.265 0.000 
530 0.155 0.806 0.039 750 0.735 0.265 0.000 
540 0.230 0.754 0.016 760 0.735 0.265 0.000 
550 0.302 0.692 0.006 770 0.735 0.265 0.000 
560 0.373 0.625 0.002 780 0.735 0.265 0.000 
570 0.444 0.555 0.001 

a.  Condensed from Wyszecki and Stiles (1982).  Copyright 1982 by John 
Wiley & Sons, Inc. Reproduced by permission. 
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Fig. 2.4.  A C.I.E. 1931 chromaticity diagram showing the regions associated 
with various colors. [redrawn from Kelly (1943), by permission] 

Figure 2.4 shows a chromaticity diagram subdivided into regions of 
various colors.  These divisions are rather crude, and a wide range of 
distinguishable colors is included within each division.  Thus colors such as 
pink, rose, mauve, maroon, magenta and fuchsia may all fall within the pink 
region of Fig. 2.4.  Likewise, a very "bright" yellow may lie in the white 
region of the diagram, although its (x,y) position will be on the yellow side of 
the pure white point at (x,y) = (1/3,1/3). 

Suppose a sample of radiant power F(8) has chromaticity coordinates 
(x,y) that land it at point P on the chromaticity diagram of Fig. 2.5.  The white 
light point at (x,y) = (1/3,1/3) is indicated by W. Now draw a straight line from 
W through P to intersect the spectrum locus at Q. The wavelength of the 
spectrum locus at Q is called the dominant wavelength 8d of F(8). The 
fraction p = WP/WQ, where WP and WQ denote the lengths of the respective 
line segments, is defined as the purity of the color of F(8). The 
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Fig. 2.5.  Determination of dominant and complementary wavelengths, and of 
purity. 

dominant wavelength is the wavelength of monochromatic light which, if 
mixed with pure white light in a proportion of p parts of monochromatic light 
and 1 ! p parts of white light, will reproduce the color of the given F(8). 
Clearly, the pure (monochromatic) colors of the spectrum locus have a purity 
of p = 1. White light, the most "impure" mixture of all colors, has p = 0 and 
an undefined 8d. 

The color of points such as PN in the "purple region" of the 
chromaticity diagram cannot be reproduced by white light plus pure spectral 
light, and thus do not have a dominant wavelength.  However, if we extend PN 
through W and on to QN as before, the spectral wavelength at QN is the 
complementary wavelength, and the associated purity is defined to be p = 
WPN/WQO, as shown in Fig. 2.5.  The complementary wavelength is the 
wavelength of pure spectral light that, if removed from white light in the 
proper proportion, will give a color match to F(8). That is to say, purple light 
is white light minus green light, which leaves a mixture of red and blue. 
Colors such as purple are sometimes called subtractive colors, for obvious 
reasons. 
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The standard reference work on photometry and colorimetry is the 
treatise by Wyszecki and Stiles (1982).  Volumes I and II of Hydrologic Optics 
(1976) also contain a rigorous and general development of these subjects. 

An example of experimentally determined 
chromaticity coordinates 

Figure 2.6(a) depicts the spectral dependence of the radiance of 
submerged sandy shoals and reefs as observed by Duntley (1963) looking 

Fig. 2.6.  Relative radiances for various bottom types as measured looking 
through the bottom of a glass-bottomed boat (panel a) and from an aircraft 
1300 m above the sea surface (panel b).  [redrawn from Duntley (1963), by 
permission] 
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Fig. 2.7.  Points on the chromaticity diagram as generated by the radiances of 
Fig. 2.6.  The upper curve corresponds to Fig. 2.6(a), and the lower curve to 
Fig. 2.6(b).  Point W is the white light point.  [redrawn from Duntley (1963), 
by permission] 

straight down through a glass-bottomed boat surveying parts of the east coast 
of Florida.  Radiances for the same submarine area observed from an altitude 
of 4300 feet (1300 m) are depicted in Fig. 2.6(b).  If L(b;8) is the spectral 
radiance of the underwater scene at a location where the bottom depth is b 
(feet), then the chromaticity coordinates for each bottom depth case are 
obtained by using the plotted radiances in Eqs. (2.10) and (2.11), with L(b;8) 
replacing F(8). The locations of the (x,y) chromaticity coordinates are plotted 
for the various bottom depths in the two curves of Fig. 2.7; the upper curve is 
for the radiances of Fig. 2.6(a) (from the boat) and the lower curve is for the 
radiances of Fig. 2.6(b) (from the air).  Note 
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on the upper curve that when the water is shallow [the point at b = 6 ft, or (x,y) 
= (0.27,0.39)], the color is an impure green with a dominant wavelength and 
purity of (8d,p) = (507 nm, 0.19).  As the water depth increases, the dominant 
wavelength shifts toward the blue and the purity of the color increases.  By the 
time the open ocean is reached (the "Gulf Stream" curve of Fig. 2.6, and the 
"infinite" depth point of Fig. 2.7), the color is a fairly pure, deep blue with 
(8d,p) = (477 nm, 0.76).  Similar comments hold for the bottom-depth 
dependence of the water color as seen from the airplane; these data are plotted 
on the shorter curve of Fig. 2.7.  Further examples of chromaticity diagrams 
for natural waters can be found in Jerlov (1976). 

2.6 Problems 

2.1.  Figure 2.8 shows the relative spectral radiances of sunlight reflected from 
the covers of four important books:  (a) Marine Optics by Jerlov (1976), (b) 
Laser Remote Sensing by Measures (1992), (c) Absorption and Scattering of 
Light by Small Particles by Bohren and Huffman (1983), and (d) Ocean Optics 
XI, edited by Gilbert (1992).  For convenience in generating the figure, each 
measured L(8) was normalized to the largest value in the wavelength interval 
350 nm to 750 nm.  Compute the chromaticity coordinates of these book 
covers (as seen in sunlight).  Values of L(8) read from the figure at 20 nm 
intervals should give a sufficiently accurate answer.  What color would you 
call each book? You can check your answers by going to the library. 

2.2.  Suppose you have a light source that emits light with the same spectral 
distribution as the green tristimulus function, (8). What are the chromaticity 
coordinates (x,y) of this light? What are the dominant wavelength 8d and 
purity p? 

2.3. What are the chromaticity coordinates of an object that is radiating as a 
blackbody at a temperature of T = 1000 K?  Could you describe the object as 
being "red hot"? 
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Fig. 2.8. Relative spectral radiances for use in problem 2.1. 
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