
Chapter 3


Optical Properties of Water1 

We now have learned how to quantitatively describe light fields.  It 
remains to learn how to measure and describe the optical properties of the 
medium through which the light propagates. 

Natural waters, both fresh and saline, are a witch's brew of dissolved 
and particulate matter.  These solutes and particles are both optically 
significant and highly variable in kind and concentration.  Consequently, the 
optical properties of natural waters show large temporal and spatial variations 
and seldom resemble those of pure water. 

The great variability of the optical properties of natural waters is the 
bane of those who desire precise and easily tabulated data.  However, it is the 
connections between the optical properties and the biological, chemical and 
geological constituents of natural water and the physical environment that 
define the critical role of optics in aquatic research.  For just as hydrologic 
optics utilizes results from the biological, chemical, geological and physical 
subdisciplines of limnology and oceanography, so do those subdisciplines 
incorporate optics.  This synergism is seen in such areas as bio-optical 
oceanography, marine photochemistry, mixed-layer dynamics, laser 
bathymetry, and remote sensing of biological productivity, sediment load, or 
pollutants. 

The bulk, or large-scale, optical properties of water are conveniently 
divided into two mutually exclusive classes: inherent and apparent.  Inherent 
optical properties (IOP's) are those properties that depend only upon the 
medium, and therefore are independent of the ambient light field within  the 
medium.  The two fundamental IOP's are the absorption coefficient and the 
volume scattering function.  Other IOP's include the index of refraction, the 
beam attenuation coefficient and the single-scattering albedo.  Apparent 
optical properties (AOP's) are those properties that depend both on the 
medium (the IOP's) and on the geometric (directional) structure of the 

1Substantial parts of this chapter are reproduced from "Optical Properties of 
Water" by C.D. Mobley, in Handbook of Optics, Second Edition, M. Bass, 
editor, copyright 1994 by McGraw-Hill, Inc. Reproduced by permission of 
McGraw-Hill, Inc. 
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 ambient light field, and that display enough regular features and stability to 
be useful descriptors of the water body. Commonly used AOP's are the 
irradiance reflectance, the average cosines, and the various diffuse attenuation 
coefficients. All of these quantities are defined below. 

Radiative transfer theory provides the connection between the IOP's 
and the AOP's.  The physical environment of a water body – waves on its 
surface, the character of its bottom, the incident radiance from the sky – enters 
the theory via the boundary conditions necessary for solution of the equations 
arising from the theory. 

The goal of this chapter is to survey the bulk optical properties of 
natural waters.  Our discussion of these properties is tailored to meet the needs 
of radiative transfer theory as applied to hydrologic optics, and we shall draw 
upon this information throughout the remainder of the book.  We comment 
only briefly on the reasons why the various optical properties have their 
observed values.  However, we shall discuss in some detail the presently 
available models that seek to predict bulk optical properties from parameters 
of biological or geological significance, such as chlorophyll concentration or 
particle mass concentration.  The unseverable connections between optics and 
biology, chemistry, and geology thus will be made obvious.  We close the 
chapter with an overview of "single-particle" optics, in order to show how the 
transition is made from a collection of diverse particles to the needed bulk 
optical properties. 

3.1 Inherent Optical Properties 

The inherent optical properties (IOP's) specify the optical properties of 
natural waters in a form suited to the needs of radiative transfer theory.  We 
shall define these properties here, and discuss their measurement and values 
in Sections 3.6-3.9, below. 

Consider a small volume )V of water, of thickness )r, illuminated by 
a narrow collimated beam of monochromatic light of spectral radiant power 
Mi(8), W nm!1, as schematically illustrated in Fig. 3.1.  Some part Ma(8) of the 
incident power Mi(8) is absorbed within the volume of water.  Some part 
Ms(R;8) is scattered out of the beam at an angle R, and the remaining power 
Mt(8) is transmitted through the volume with no change in direction.  Let Ms(8) 
be the total power that is scattered into all directions.  Furthermore, assume 
that no inelastic scattering occurs, i.e. assume that no photons undergo a 
change in wavelength during the scattering process.  Then by conservation of 
energy, 
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Fig. 3.1.  Geometry used to define inherent optical properties. [reproduced 
from Mobley (1994), by permission] 

The spectral absorptance A(8) is the fraction of incident power that is 
absorbed within the volume: 

We are now using "spectral" to mean "as a function of wavelength."  Spectral 
IOP's and AOP's do not have units of nm!1 appended.  Likewise, the spectral 
scatterance B(8) is the fractional part of the incident power that is scattered 
out of the beam, 

and the spectral transmittance T(8) is 

Clearly, A(8) + B(8) + T(8) = 1. 
A quantity easily confused with the absorptance A(8) is the absorbance 

D(8) (also called the optical density), which is defined as 

D(8) is the quantity actually measured in a spectrophotometer (Kirk, 1983). 
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The inherent optical properties usually employed in hydrologic optics 
are the spectral absorption and scattering coefficients, which are respectively 
the spectral absorptance and scatterance per unit distance in the medium. In 
the geometry of Fig. 3.1, the spectral absorption coefficient a(8) is defined as 

(3.1) 

and the spectral scattering coefficient b(8) is 

(3.2) 

The spectral beam attenuation coefficient c(8) is defined as 

(3.3) 

Now take into account the angular distribution of the scattered power, 
with B(R;8) being the fraction of incident power scattered out of the beam 
through an angle R into a solid angle )S centered on R, as shown in Fig. 3.1. 
The angle R is called the scattering angle; its values lie in the interval 0 # R 
# B. Then the angular scatterance per unit distance and unit solid angle, 
$(R;8), is 

The spectral power scattered into the given solid angle )S is just the 
spectral radiant intensity scattered into direction R times the solid angle: 
Ms(R;8) = Is(R;8))S. Moreover, if the incident power Mi(8) falls on an area 
)A, then the corresponding incident irradiance is Ei(8) = Mi(8)/)A. Noting 
that )V = )r)A is the volume of water that is illuminated by the incident beam 
gives 

(3.4) 

This form of $(R;8) suggests the name spectral volume scattering function and 
the physical interpretation of scattered intensity per unit incident irradiance per 
unit volume of water.  In the language of a physicist, $(R;8) also can be 
interpreted as the differential scattering cross section per unit volume. 
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Integrating $(R;8) over all directions (solid angles) gives the total 
scattered power per unit incident irradiance and unit volume of water, in other 
words the spectral scattering coefficient: 

(3.5) 

The last equation follows because scattering in natural waters is azimuthally 
symmetric about the incident direction (for unpolarized sources and for 
randomly oriented scatterers).  This integration is often divided into forward 
scattering, 0 # R # B/2, and backward scattering, B/2 # R # B, parts. The 
corresponding spectral forward and backward scattering coefficients are, 
respectively, 

(3.6a) 

(3.6b) 

The spectral volume scattering phase function, , is defined by

(3.7) 

Writing the volume scattering function $(R;8) as the product of the scattering 
coefficient b(8) and the phase function partitions $(R;8) into a factor 
giving the strength of the scattering, b(8) with units of m!1, and a factor giving 
the angular distribution of the scattered photons,  with units of sr!1. 
Combining Eqs. (3.5) and (3.7) gives the normalization condition for the phase 
function: 

(3.8) 

The term "phase function" has its historical origins in astronomy;  has 
nothing whatsoever to do with the phase of an electromagnetic wave. 

The average over all scattering directions of the cosine of the scattering 
angle R, 

(3.8b) 

is a convenient measure of the "shape" of the phase function. For example, 
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if (R) is very large for small R, then g is near one. If (R) is symmetric 
about R = 90°, then g = 0. The average cosine g often is called the asymmetry 
parameter of the phase function. 

Another inherent optical property commonly used in hydrologic optics 
is the spectral single-scattering albedo To(8), defined by 

(3.9) 

In waters where the beam attenuation is due primarily to scattering, To is near 
one.  In waters where the beam attenuation is due primarily to absorption, To 

is near zero.  As we shall see in Section 6.1, the single-scattering albedo is the 
probability that a photon will be scattered (rather than absorbed) in any given 
interaction, hence To(8) is also known as the probability of photon survival. 

Just as with the radiometric quantities, there is an "historic" set of 
symbols in addition to the IAPSO recommended symbols, which we have used 
above.  Table 3.1 summarizes the IOP's as they are commonly employed in 
hydrologic optics. 

The preceding discussion has assumed that no inelastic (transpectral) 
scattering processes are present.  However, transpectral scattering does occur 
in natural waters, attributable to fluorescence by dissolved matter or 
chlorophyll, and to Raman or Brillouin scattering by the water molecules 
themselves.  Power lost from wavelength 81 by scattering into wavelength 82 

� 81 appears in the above formalism as an increase in the spectral absorption 
at 81. In this case, a(81) accounts for "true" absorption (e.g. 

Table 3.1.  Terms, units, and symbols for inherent optical properties.

 Quantity SI units Recommen- Historic 
ded symbol symbol 

(real) index of refraction 
absorption coefficient 
volume scattering function 
scattering phase function 
scattering coefficient 

backward scattering coefficient 
forward scattering coefficient 

beam attenuation coefficient 
single-scattering albedo 

dimensionless 
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conversion of radiant energy into heat) as well as for the loss of power at 
wavelength 81 by inelastic scattering to other wavelengths.  The gain in power 
at 82 appears as a source term in the radiative transfer formalism.  These 
matters are discussed in detail in Chapter 5. 

The IOP's as just defined give us a full description of the optical 
properties of a water body as needed for the interpretation and prediction of 
underwater light fields within the framework of radiative transfer theory.  Note 
that the IOP's can be measured using small samples of water; they are 
independent of the environment where the sample was taken.  However, nature 
has not been kind to us.  It is usually quite difficult to measure the IOP's, 
especially in situ. Indeed, the only IOP that is routinely and accurately 
measured in situ is the beam attenuation coefficient c(8), and even then it is 
usually measured at only one wavelength, 8 . 660 nm. The optical 
measurements commonly made are of various apparent optical properties, 
which we discuss in Section 3.2. 

Modeling IOP's 

It is the total values of the various IOP's that are relevant to radiative 
transfer.  However, each of these quantities is a sum of contributions by the 
various constituents of a water body.  For example, the total absorption 
coefficient a is the sum of absorption by the water itself, by various biological 
particles, by dissolved substances, by mineral particles, and so on.  Since the 
composition of natural water bodies varies with location and time t, so do 
the IOP's. 

It is often desirable to model, or predict, the IOP's in terms of the 
constituent contributions.  Thus we write 

(3.10) 

if there are Na different substances contributing to the absorption.  Typically, 
a1 is taken to be absorption by pure sea water, so that a1( ;t;8) / aw(8) 
depends only on wavelength.  Likewise we write 

(3.11) 
and 

(3.12) 

where Ns is the number of constituents contributing to scattering. 
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Each of the component volume scattering functions can be written in 
terms of a phase function. Thus 

in which case Eq. (3.12) can be written as 

(3.13) 

There are two points to note in Eq. (3.13).  First, if each of the 
constituent i's satisfies the normalization requirement (3.8), then so does the
total . Second, we have assumed that the spatial and temporal variability of 
the constituent $i's are contained in the corresponding scattering coefficients 
bi.  This is usually reasonable, since the directional (R) nature of the scattering 
is largely determined by the type of particles (e.g. water molecules, small 
mineral particles, or large biological particles), and the strength of scattering 

concentrationis determined by the  of particles, which varies with location and 
time.  We can imagine exceptions to this statement, such as a change in 
induced by a change in the particle size distribution while bi stays constant, but 

the
Eq. (3.13) is generally a good approximation of nature.  The assumption that 

i's are independent of position and time yields major computational 
savings (see Section 8.2), and we shall make the assumption in the numerical 
simulation of Section 11.8.  Examples of Eqs. (3.10) to (3.13) will be seen in 
Sections 3.7 and 3.8. 

3.2 Apparent Optical Properties

Apparent optical properties (AOP's) arise when we use radiometric 
quantities other than radiance to describe the light field in a water body.  As we 
already have stated, the AOP's depend both on the medium (i.e. on the IOP's) 
and on the directional structure of the ambient light field.  Any radiometric 
quantity such as an irradiance satisfies this half of the definition.  However, the 
second half of the definition requires that the quantity also display enough 
regular features and stability to be useful for describing a water body.  An 
irradiance, for example, can change greatly in magnitude in a matter of seconds 
if a cloud passes in front of the sun, or if a gust of wind changes the sea surface 
from glassy smooth to rippled.  However, observation shows that certain ratios 
of radiometric quantities are relatively 

i 
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insensitive to environmental factors such as sea state.  Likewise, the rate of 
change with depth of a radiometric quantity is often well behaved.  It is these 
ratios and depth derivatives that are candidates for consideration as AOP's. 

An ideal AOP changes only slightly with external environmental 
changes, but changes enough from one water body to the next to be useful in 
characterizing the different optical properties of the two water bodies.  Note 
that, unlike IOP's, AOP's cannot be measured on water samples, because they 
depend on the ambient radiance distribution found in the water body itself. 

Table 3.2 lists the most commonly used AOP's, along with their 
recommended and historic symbols.  We define these AOP's in the remainder 
of this section.  We shall have ample opportunity in the course of our studies 
to further examine the AOP's and to illustrate their dependence on the IOP's 
and on environmental conditions.

 Table 3.2.  Terms, units, and symbols for apparent optical properties. 

Quantity SI units Recommen- Historic 
ded symbol symbol 

distribution function dimensionless D D 
average cosine of light field dimensionless D = 1/ 

of downwelling light dimensionless D(!) = 1/d d 

of upwelling light dimensionless D(+) = 1/u u 

irradiance reflectance dimensionless R R(!) 
remote sensing reflectance sr!1 R — rs 

(vertical) diffuse attenuation 
coefficients (K-functions): 
of radiance L(z;,2,N) m!1 K(2,N) K(2,N) 
of downward irradiance Ed(z) m!1 Kd K(!) 
of upward irradiance Eu(z) m!1 K K(+)u 

of downward scalar irradiance Eod(z) m!1 Kod k(!) 
of upward scalar irradiance Eou(z) m!1 K k(+)ou 

of total scalar irradiance Eo(z) m!1 K ko 

of PAR(z) m!1 KPAR — 
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Average cosines 

Let us consider the case of horizontally homogeneous water bodies. 
Let us also measure the geometric depth z (in meters) as positive downward 
from the mean sea surface (i.e., z = x3 in the coordinate system of Fig. 1.3). 
Then the quantity 

(3.14) 

is called the spectral downwelling average cosine. The definition shows that 
(z;8) is the average value of the cosine of the polar angle of all the photons 

contributing to the downwelling radiance at the given depth and wavelength. 
The spectral upwelling average cosine is defined analogously: 

(3.15) 

The average cosines are crude but useful one-parameter measures of the 
directional structures of the downwelling and upwelling light fields.  For 
example, if the radiance distribution is collimated in direction (2o,No), with 0 
# 2o # B/2, then = cos 2o. (In this case, is undefined since there are no 
photons heading upward.) If the radiance distribution is isotropic, then =

 = 1/2.  Typical values of the average cosines for natural waters illuminated 
by the sun and sky are  . 3/4 and . 3/8. A useful definition of an 
average cosine for the entire light field can be make by integrating over all 
directions = in Eq. (3.14): 

This quantity varies from = 0 for an isotropic radiance distribution to    
= cos 2o for a collimated beam in direction (2o,No); thus !1 # # 1. In 
natural, sunlit waters,  is always positive.  Note that  is not equal to the 
sum of and .

 Older literature generally refers to distribution functions, Dd and Du, 
rather than to average cosines.  The distribution functions are just reciprocals 
of the average cosines: 

(3.16) 
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Reflectances 

Another commonly used AOP is the spectral irradiance reflectance (or 
irradiance ratio) R(z;8), defined as the ratio of spectral upwelling to 
downwelling plane irradiances: 

(3.17)


R(z;8) is often evaluated in the water just below the surface; we denote this 
depth by z = w . 0. 

The spectral remote-sensing reflectance Rrs is defined as 

(3.18) 

Here depth z = a indicates that Rrs is evaluated using L and Ed in the air, just 
above the water surface; this L is often called the "water-leaving" radiance. 
The remote-sensing reflectance is a measure of how much of the downwelling 
light that is incident onto the water surface is eventually returned through the 
surface in direction (2,N), so that it can be detected by a radiometer pointed in 
the opposite direction.  Both R and Rrs are of great use in optical oceanography, 
and we shall encounter them again. 

Diffuse attenuation coefficients 

Under typical oceanic conditions, for which the incident lighting is 
provided by the sun and sky, the various radiances and irradiances all decrease 
approximately exponentially with depth, at least when far enough below the 
surface (and far enough above the bottom, in shallow water) to be free of 
boundary effects.  It is therefore convenient to write the depth dependence of, 
say, Ed(z;8) as 

(3.19)


where Kd(z;8) is the spectral diffuse attenuation coefficient for spectral 
downwelling plane irradiance.  Solving for Kd(z;8) gives 

z; z;

(3.20) 

Kd( 8). ( 8)which is generally the equation used to define If we define 
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as the average of Kd(z;8) over the depth interval from 0 to z, i.e. 

then we can write Eq. (3.19) as 

(3.21) 

Other diffuse attenuation coefficients, e.g. Ku, Kod, Kou, KPAR and K(2,N), are 
defined by equations analogous to Eqs. (3.19) and (3.20), using the 
corresponding radiometric quantities.  For example, K(2,N) / K(z;,2,N;8) 
refers to the diffuse attenuation of the radiance L(z;2,N;8), i.e. to 

(3.22) 

The distinction between beam and diffuse attenuation coefficients is 
important.  The beam attenuation coefficient c(8) is defined in terms of the 
radiant power lost from a single, narrow, collimated beam of photons.  The 
downwelling diffuse attenuation coefficient Kd(z;8) is defined in terms of the 
decrease with depth of the ambient downwelling irradiance Ed(z;8), which 
comprises photons heading in all downward directions (a diffuse, or 
uncollimated, light field).  Kd(z;8) clearly depends on the directional structure 
of the ambient light field, hence its classification as an apparent optical 
property. 

The various diffuse attenuation coefficients, or "K-functions," are 
conceptually distinct.  In practice, though, they often have nearly the same 
numerical values except, perhaps, near the surface, and they all asymptotically 
approach the same value at great depth. In homogeneous (vertically well 
mixed) waters, the K-functions depend only weakly on depth and therefore can 
serve as convenient, if imperfect, descriptors of the water body.  Smith and 
Baker (1978) have pointed out other reasons why the K-functions are useful: 

! The K's are defined as ratios and therefore do not require absolute 
radiometric measurements. 

! The K's are strongly correlated with phytoplankton chlorophyll 
concentration, thus they provide a connection between biology and 
optics. 

! About 90% of the diffusely reflected light from a water body comes 
from a surface layer of water of depth 1/Kd; thus Kd has implications for 
remote sensing. 
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! Radiative transfer theory provides several useful relations between the 
K's and other quantities of interest, such as the absorption and beam 
attenuation coefficients and other AOP's. 

! Instruments are commercially available for the routine determination 
of the K's. 

Gordon's normalization of Kd 

K

Gordon (1989a) developed a simple way to normalize measured Kd 

values.  His normalization for all practical purposes removes the effects of the 
sea state and incident sky radiance distribution from Kd, so that the normalized 

d can be regarded as an IOP. The theory behind the normalization is given 
in the above paper and in Gordon (1976); the mechanics of the normalizing 
process are as follows. 

Let Ed(sun) be the irradiance incident onto the sea surface due to the 
sun's direct beam, and let Ed(sky) be the irradiance due to diffuse sky radiance. 
Then the fraction f of the direct sunlight in the incident irradiance that is 
transmitted through the surface into the water is 

Here t(sun) and t(sky) are respectively the fractions of the direct beam and of 
the diffuse irradiance transmitted through the surface; these quantities can be 
computed using methods to be developed in Chapter 4 [where they are denoted 
by t(a,w)]. However, if the solar zenith angle 2s is less than 45°, then t(sun) 
. 0.97. If the sky radiance distribution is nearly uniform (as it is for a clear 
sky), then t(sky) . 0.94. In this case, we can accurately estimate f from 
measurements made just above the sea surface: 

The sun and sky irradiances are easily obtained from an instrument on the deck 
of a ship.  When both direct and diffuse light fall onto the instrument, it records 
Ed(sun) + Ed(sky). When the direct solar beam is blocked, the instrument 
records Ed(sky). (Advanced technology is not required here:  just hold your hat 
so that its shadow falls on the instrument.) 

Next compute the nadir angle of the transmitted solar beam, 2sw, using 
Snell's law [see Eq. (4.8)]: 
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Finally, compute the quantity 

This value of Do is valid for flat or rough sea surfaces as long as 2s # 50°. For 
larger values of 2s, or for an overcast sky, a correction must be applied to Do 

to account for surface wave effects on the transmitted light; the correction 
factors are given in Gordon (1989a, his Fig. 6). 

Gordon's normalization then consists simply of dividing the measured 
Kd by Do: 

Physically, Do is a distribution function (1/ ) that reduces Kd values to the 
values that would be measured if the sun were at the zenith, if the sea surface 
were level, and if the sky were black (i.e. if there were no atmosphere).  The 
zenith-sun, level-surface, black-sky case is the only physical situation for 
which Do = 1. In other words, normalization by Do removes the influence of 
incident lighting and sea state on Kd.  The same normalization can be applied 
to depth-averaged values . 

We recommend that, whenever possible, experimentalists routinely 
make the simple measurements necessary to determine Do. When making 
hydrographic casts, the above-surface Ed measurements can be made on deck 
with the underwater instrument, just before the instrument is placed in the 
water.  Normalization of Kd greatly enhances its value in the recovery of IOP's 
from irradiance measurements; these matters are discussed in Section 10.4. 

3.3	 Optically Significant Constituents 
of Natural Waters 

In order to motivate our subsequent studies of the absorbing and 
scattering properties of natural waters, we need to have some knowledge of the 
composition of those waters.  Natural waters contain a continuous size 
distribution of particles ranging from water molecules of size -0.1 nm, to small 
organic molecules of size -1 nm, to large organic molecules of size -10 nm, 
to viruses of size -100 nm, to ..., to whales of size -10 m, to submarines of 
size -100 m.  Thus, strictly speaking, water is composed entirely of particles. 
However, the constituents of natural waters are 
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traditionally divided into "dissolved" and "particulate" matter, of organic and 
inorganic origins, living and nonliving. 

When filtering a water sample, everything that passes through a filter 
whose pore size is roughly 0.4 :m is called dissolved matter, and everything 
retained on the filter is called a particle.  This dividing line is determined more 
by our ability to examine the material left on the filter pad than by any 
distinguishing features of the chemical, biological or optical properties of the 
matter.  Note that 0.4 :m = 400 nm, the shortest wavelength of visible light. 
Thus optical microscopy is unable to resolve individual particles smaller than 
the historical dividing line between dissolved and particulate matter. 

Each of the components of natural water, regardless of how they are 
classified, contributes in some fashion to the values of the optical properties 
of a given water body. 

Pure sea water consists of pure water plus various dissolved salts, 
which average about 35 parts per thousand (35‰) by weight.  These salts 
increase scattering above that of pure water by about 30% (see Table 3.8, 
below).  These salts have a negligible effect on absorption at visible 
wavelengths, but it is likely that they increase absorption somewhat at 
ultraviolet wavelengths.  They increase absorption tremendously at extremely 
long (8 $ 0.1 m) wavelengths. 

Both fresh and saline waters contain varying concentrations of 
dissolved organic compounds.  These compounds are produced during the 
decay of plant matter and consist mostly of various humic and fulvic acids 
(Kirk, 1983).  These compounds are generally brown in color, and in sufficient 
concentrations can color the water yellowish brown.  For this reason the 
compounds are generically referred to as yellow matter or CDOM, colored 
dissolved organic matter. Other common names are gelbstoff and gilvin. 
Yellow matter absorbs very little in the red, but its absorption increases rapidly 
with decreasing wavelength and can be significant at blue and ultraviolet 
wavelengths.  One of its main sources is decayed terrestrial vegetation. 
Concentrations are thus generally greatest in lakes, rivers, and coastal waters 
influenced by river runoff.  In such waters, yellow matter can be the dominant 
absorber at the blue end of the spectrum.  In mid-ocean waters, absorption by 
yellow matter is usually small compared to absorption by other constituents, 
but some yellow matter is likely to be present as the result of decaying 
phytoplankton, especially at the end of a bloom. 

Particulate matter in the oceans has two distinct origins:  biological and 
physical.  The organic particles of optical importance are created as bacteria, 
phytoplankton, and zooplankton grow and reproduce. Particles of 
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a given size are destroyed by breaking apart after death, by flocculation into 
larger aggregate particles, or by settling out of the water column.  Inorganic 
particles are created primarily by weathering of terrestrial rocks and soils. 
These particles can enter the water as wind-blown dust settles on the sea 
surface, as rivers carry eroded soil to the sea, or as currents resuspend bottom 
sediments.  Inorganic particles are removed from the water by settling, 
aggregating, or dissolving.  This particulate matter usually is the major 
determiner of both the absorption and scattering properties of natural waters 
and is responsible for most of the temporal and spatial variability in these 
optical properties. 

Organic particles occur in many forms: 
VIRUSES.  Natural marine waters contain virus particles in concentrations of 

1012 to 1015 particles m!3 (Suttle, et al. 1990).  These particles are generally 
much smaller (20!250 nm) than the wavelength of visible light.  In spite 
of their large numbers, it is unlikely that viruses contribute significantly to 
the absorption and total scattering properties of natural waters, because 
they are very inefficient absorbers and scatterers on a per-particle basis. 
However, very small particles can be efficient backscatterers, and there is 
speculation that viruses sometimes may contribute significantly to the 
backscatter coefficient bb, at least at blue wavelengths in very clear waters. 
Note that viruses would be considered dissolved matter by the traditional 
definition. 

COLLOIDS.  Nonliving colloidal particles in the size range 0.4!1.0 :m are 
found in typical number concentrations of 1013 m!3, and colloids of size # 
0.1 :m are found in abundances of 1015 m!3 (Koike, et al., 1990; Wells and 
Goldberg, 1991).  Part of the absorption traditionally attributed to 
dissolved matter probably is due to colloids, some of which strongly 
resemble fulvic acids in electron micrographs.  Modeling results based on 
Mie scattering theory (e.g. Stramski and Kiefer, 1991) suggest that colloids 
contribute significantly to backscattering. 

BACTERIA.  Living bacteria in the size range 0.2!1.0 :m occur in typical 
number concentrations of 1011!1013 m!3. It only recently has been 
recognized that bacteria can be significant scatterers and absorbers of light, 
especially at blue wavelengths and in clear oceanic waters, where the 
larger phytoplankton are relatively scarce (Spinrad, et. al., 1989; Morel 
and Ahn, 1990; Stramski and Kiefer, 1991).  Bacteria are likely the most 
important microorganisms contributing to particulate backscatter. 

PHYTOPLANKTON.  These ubiquitous microscopic plants occur with incredible 
diversity of species, size, shape, and concentration.  They range in cell size 
from less than 1 :m to more than 200 :m, and some 
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species form even larger chains of individual cells.  It has long been 
recognized that phytoplankton are the particles primarily responsible for 
determining the optical properties of most oceanic waters.  Their 
chlorophyll and related pigments strongly absorb light in the blue and red 
and thus, when concentrations are high, predominate in determining the 
spectral absorption of sea water.  These particles are generally much larger 
than the wavelength of visible light and are efficient scatterers, especially 
via diffraction, thus strongly influencing the total scattering properties of 
sea water.  Although large particles scatter strongly at small scattering 
angles, and thus contribute to b, they scatter only weakly at large angles. 
Therefore the larger phytoplankton contribute relatively little to bb. 

ORGANIC DETRITUS. Nonliving organic particles of various sizes are produced, 
for example, when phytoplankton die and their cells break apart, and when 
zooplankton graze on phytoplankton and leave cell fragments and fecal 
pellets.  Even if these detrital particles contain pigments at the time of their 
production, they can be rapidly photo-oxidized and lose the characteristic 
absorption spectrum of living phytoplankton, leaving significant 
absorption only at blue wavelengths.  There is circumstantial evidence 
(Stramski and Kiefer, 1991) that sub-micrometer, low-index-of-refraction, 
detrital particles are the major backscatterers in the ocean. 

LARGE PARTICLES. Particles larger than 100 :m include zooplankton (living 
animals with sizes from tens of micrometers to two centimeters) and 
fragile amorphous aggregates of smaller particles ("marine snow," with 
sizes from 0.5 mm to tens of centimeters).  Such particles occur in highly 
variable numbers from almost none to thousands per cubic meter.  Even at 
relatively large concentrations, these large particles tend to be missed by 
optical instruments that randomly sample only a few cubic centimeters of 
water or that generate turbulence, which can break apart the aggregates. 
Large "fluffy" particles can be efficient scatterers of light at all scattering 
angles.  Aggregates therefore may significantly affect the optical properties 
(especially backscatter) of large volumes of water, as are seen by remote 
sensing instruments.  Although such optical effects are recognized, they 
have not been quantified (Alldredge and Silver, 1988; Carder and Costello, 
1994). 

Inorganic particles generally consist of finely ground quartz sand, clay 
minerals, or metal oxides in the size range from much less than 1 :m to several 
tens of micrometers.  Insufficient attention has been paid to the optical effects 
of such particles in sea water, although it is recognized that inorganic particles 
are sometimes optically more important than organic  
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particles.  Such situations can occur both in turbid coastal waters carrying a 
heavy sediment load and in very clear oceanic waters that are receiving wind­
blown dust (Carder, et al., 1986). 

At certain stages of its life, the phytoplankton coccolithophore species 
Emiliania huxleyi is a most remarkable biological source of crystalline 
particles.  During blooms, E. huxleyi produces and sheds enormous numbers 
of small (2!4 :m) calcite plates; concentrations of 3×1011 plates m!3 have been 
observed (Balch, et al., 1991).  Although they have a negligible effect on light 
absorption, these calcite plates are extremely efficient light scatterers: 
irradiance reflectances of R = 0.39 have been observed at blue wavelengths 
during blooms (compared with R = 0.02 to 0.05 in the blue for typical ocean 
waters).  Such coccolithophore blooms give the ocean a milky white or 
turquoise appearance. 

Stramski and Kiefer (1991) and Morel (1991a) give excellent reviews 
of the optical properties of marine particles.  We postpone until Section 3.11 
discussion of how the optical properties of individual particles combine to 
determine the bulk (water plus many particles) optical properties. 

3.4 Particle Size Distributions 

The sizes of the particles just discussed are measured in various ways. 
Visible microscopy can be used for particles greater in size than a few 
wavelengths of light; electron microscopy can be used for particles as small as 
nanometers in size.  Both methods are exceedingly tedious and time consuming 
if large numbers of particles must be counted and sized.  Most size data have 
been obtained using electrical resistance methods (e.g. Coulter® counters). 
These instruments measure the change in voltage induced (at constant current) 
between two small electrodes when a particle, whose resistance is different 
from that of the water, passes between the electrodes.  Assuming that the 
particle is a dielectric, the change in voltage is proportional to the particle's 
volume, all else being equal.  These instruments enable the rapid, automated 
evaluation of large numbers of particles, for particle sizes greater that -1 :m. 
In situ sizing of particles has been done with video cameras (Eisma, et al., 
1990), with laser-light diffraction techniques (Bale and Morris, 1987), and with 
laser holography (Costello, et al., 1989).  These techniques work best for large 
particles, and they are especially valuable in the analysis of delicate aggregate 
particles, which break apart if disturbed.  New techniques for image analysis 
and pattern recognition may enhance the utility of both microscopy and in situ 
observations in coming years. 
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For instrumentation reasons, then, most of the available data is for 
particles larger than -1 :m in size. Only recently has information become 
available on sub-micrometer particles. 

A single family of particle size distributions sometimes suffices to 
describe oceanic particulate matter in the optically important size range from 
0.1 to 100 :m. Let N(x) be the number of particles per unit volume with "size" 
greater than x in a sample of particles.  Since only a sphere has a unique size 
(its diameter), x usually represents equivalent spherical diameter computed 
from particle volume, but also can represent particle volume or surface area. 
The Junge (also called hyperbolic) cumulative size distribution is then (Bader, 
1970) 

where k sets the scale, xo is a reference size, and !m is the slope of the 
distribution when logN is plotted versus logx; k, xo and m are positive 
constants.  Oceanic particle size distributions usually have m values between 
2 and 5, with m = 3 to 4 being typical; such spectra can be seen in McCave 
(1983, his Fig. 7). 

As we shall see in Section 3.11, the quantity most relevant to optics is 
not the cumulative size distribution N(x), but rather the number size 
distribution n(x). The number distribution is defined such that n(x)dx is the 
number of particles per unit volume in the size interval from x to x + dx. The 
number distribution is related to the cumulative distribution by n(x) = 
*dN(x)/dx*. Thus, for the Junge distribution, 

(3.23) 

where K / kmxo 
m and s / m + 1; the slope of logn(x) vs. logx is !s. Figure 3.2 

shows the number distribution of biological particles typical of open ocean 
waters; note that a value of s = 4 gives a reasonable fit to the plotted points. 

Although Fig. 3.2 is representative of average values, the particle size 
distribution can be considerably different at a particular time and location. 
This is to be expected, considering the many types of oceanic particles and the 
various mechanisms for particle production and removal. Observation shows 
that oceanic particle size spectra often are best described by a segmented 
distribution, in which a smaller value of m is used for x less than a certain 
value, and a larger value of m is used for x greater than that value.  Such 
segmented spectra can be seen in Bader (1970, his Fig. 9) and 
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Fig. 3.2.  Number size distribution typical of biological particles in the open 
ocean. [figure courtesy of D. Stramski] 

in McCave (1983, his Fig. 8).  However, even segmented Junge distributions 
are often inadequate.  In particular, the Junge distributions tend to overestimate 
the number of small particles [note that n(x) 6 4 as x 6 0] and to underestimate 
the number of large particles. 

Risovi� (1993) shows that a segmented, generalized gamma distribution 

(3.24) 

:m

gives a better fit to observations than does a segmented Junge distribution. 
Here x is measured in micrometers.  CA and CB are constants with units of 

!6, which can be obtained from the concentrations (numbers per unit 
volume) of particle components "A" and "B"; details are given in Risovi�'s 
paper.  Component A refers to those particles whose distribution has a "steep" 
slope (that is, their number decreases rapidly as x increases); these are 
generally the small particles with x < 1 :m. Component B consists of the 
generally larger particles that decrease less rapidly in number as x increases. 
Fitting Eq. (3.24) to over 70 size distributions measured in a  
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variety of waters showed that the two parameters (A and (B fall in the ranges 
0.145 # (A # 0.195 and 0.192 # (B # 0.322, with mean values of 0.157 and 
0.226, respectively. 

It should be noted, however, that a simple distribution like Eq. (3.24) 
sometimes fails to represent oceanic conditions.  For example, during the 
growth phase of a phytoplankton bloom the rapid increase in population of a 
particular species may give abnormally large numbers of particles in a 
particular size range.  Such bloom conditions therefore give a "bump" in n(x) 
that is not well modeled. 

3.5 Electromagnetic Properties of Water 

N

In studies of electromagnetic wave propagation at the level of 
Maxwell's equations, it is convenient to specify the bulk electromagnetic 
properties of the medium via the electrical permittivity ,, the magnetic 
permeability :, and the electrical conductivity F. Since water displays no 
significant magnetic properties, the permeability can be taken equal to the free-
space (in vacuo) value at all frequencies: : = :o = 4B×10!7 N A!2. Both , and 
F depend on the frequency < of the propagating electromagnetic wave, as well 
as on the water temperature, pressure, and salinity.  Low frequency (< 6 0) 
values for the permittivity are of order , . 80,o, where ,o = 8.85×10!12 A2 s2 

!1 m!2 is the free-space value.  This value decreases to , . 1.8,o at optical 
frequencies.  Extensive tabulations of ,/,o as a function of temperature and 
pressure are given for pure water in Archer and Wang (1990).  The low 
frequency conductivity ranges from F . 4×10!6 Siemen m!1 (4×10!6 s!1) for 
pure water to F . 4.4 Siemen m!1 for sea water. 

The effects of ,, : and F on electromagnetic plane-wave propagation 
are compactly summarized in terms of the complex index of refraction, m = n 
! ik, where i = %(!1). The real part n of m is usually called "the index of 
refraction"; k is sometimes called the (dimensionless) electrodynamic 
absorption coefficient, but usually is called just "the imaginary part of the 
(complex) index of refraction."  Although n and k are collectively called the 
optical constants of water, they depend strongly on wavelength.  The explicit 
dependence of m on ,, : and F is given by (Kerker, 1969) 

where c = (,o:o)
!½ is the speed of light in vacuo. These equations can be 
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used to relate n and k to the bulk electromagnetic properties.  The optical 
constants are convenient because they are directly related to the scattering and 
absorbing properties of water.  The real index of refraction n(8) governs 
scattering both at interfaces (via the laws of reflection and refraction) and 
within the medium (via thermal or other fluctuations of n(8) at molecular and 
larger scales).  The spectral absorption coefficient a(8) is related to k(8) by 
(Kerker, 1969) 

Here 8 refers to the wavelength in vacuo corresponding to a given frequency 
< of electromagnetic wave. 

Figure 3.3 shows the wavelength dependence of the optical constants 
n and k for pure water.  The extraordinary feature seen in this figure is the 
narrow "window" in k(8), where k(8) decreases by over nine orders of 
magnitude between the near ultraviolet and the visible, and then quickly rises 
again in the near infrared.  This behavior in k(8) gives a corresponding window 
in the spectral absorption coefficient a(8), as seen in Fig. 3.4. 

The shape of the absorption curve of pure water can be crudely 
explained as follows.  At blue wavelengths, photons are barely energetic 
enough to boost electrons into higher energy levels of the water molecule, 

Fig. 3.3.  The optical constants of pure water.  The left axis gives the imaginary 
part of m, and the right axis gives the real part of m, where m is the complex 
index of refraction.  [redrawn from Zoloratev and Demin (1977), with 
permission] 
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Fig. 3.4.  Spectral absorption coefficient of pure water (solid line) and of pure 
sea water (dotted line) as a function of wavelength.  [drawn from data compiled 
in Hale and Querry (1973), Jackson (1975), Smith and Baker (1981), and 
Zoloratev and Demin (1977)] 

and the photons do not have the right energy to interact easily with the 
molecule as a whole (although some vibrational modes of the molecule can be 
excited).  The photons therefore do not interact strongly with the water 
molecules, and a(8) is at its minimum.  As the wavelength decreases toward 
the ultraviolet, the photons become sufficiently energetic to excite atomic 
transitions, and the absorption rapidly increases.  At extremely small 
wavelengths, processes such as Compton scattering (scattering of high-energy 
photons by electrons) come in to play, and the relevant parameter is just the 
density of the material, not its structure as a water molecule.  As the 
wavelength increases from blue to red and beyond, the photons begin having 
just the right energy to excite first the fundamental vibrational and then the 
rotational modes of the water molecules, and absorption once again increases 
rapidly in the infrared. The prominent peaks in a(8) in the infrared result from 
these resonant excitations of molecular motions.  At very long wavelengths, the 
photons are not energetic enough to excite molecular motions, and the 
absorption decreases. 

Ions resulting from the dissolved salts make seawater a much better 
conductor of electricity than is pure water (recall that the conductivity F of sea 
water is about one million times that of pure water).  These ions do not 
appreciably affect the absorption at most wavelengths.  However, the behavior 
of sea water as a conductor gives it a much higher absorption than 
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pure water at very long wavelengths, as shown by the dotted line in Fig 3.4. 
Not until the wavelength of the electromagnetic radiation is on the order of 
thousands of kilometers does sea water once again have an absorption 
comparable to the low values at visible wavelengths. 

Because of the opaqueness of water outside the near-ultraviolet to near-
infrared wavelengths, we can henceforth restrict our attention to this narrow 
band.  These wavelengths overlap with the wavelengths of the sun's maximum 
energy output (recall Fig. 1.1) and with a corresponding window in 
atmospheric absorption.  It is this astounding overlap of energy source and 
"open windows" that has enabled aquatic life to develop in the form we see on 
earth. 

3.6 Real Index of Refraction

As we have stated, the real part n of the index of refraction determines 
the scattering properties of a medium.  If n were truly constant, there would be 
no scattering.  However, there are always variations of n within a material 
medium.  Even in absolutely pure water, random thermal fluctuations give rise 
to varying numbers of molecules in any given small volume )V, where )V is 
small compared to the wavelength of light but large compared to atomic scales. 
These molecule number density fluctuations result in small-scale fluctuations 
in the index of refraction.  In pure sea water, the ions of dissolved salts cause 
additional molecular-scale fluctuations in n, and hence greater scattering. 
Proper treatment of this fluctuation theory of n is a difficult problem in 
statistical thermodynamics, which was solved by Einstein and Smoluchowski 
between 1908 and 1910.  Morel (1974) and Shifrin (1988) give excellent 
reviews of the associated physics and mathematics. 

Austin and Halikas (1976) exhaustively reviewed the literature on 
measurements of the real index of refraction of bulk samples of sea water. 
Their report contains extensive tables and interpolation algorithms for the 
index of refraction (relative to air), n(8,S,T,p), as a function of wavelength (8 
= 400!700 nm), salinity (S = 0!43‰), temperature (T = 0!30°C), and pressure 
(p = 105!108 Pa, or 1 to 1080 atm).  Figure 3.5 illustrates the general 
dependence of n on these four parameters:  n decreases with increasing 
wavelength or temperature, and n increases with increasing salinity or 
pressure.  Table 3.3 gives the values of n for the extreme values of each 
parameter.  The extreme values of n, 1.329128 and 1.366885, show that n 
varies by less than 3% over the entire parameter range relevant to hydrologic 
optics.  Table 3.4 gives selected values of n(8,T) for fresh water 
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Fig. 3.5. Real index of refraction of water for selected values of pressure, temperature, and salinity. 
[adapted from Austin and Halikas (1976)] 
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Table 3.3. Index of refraction of water, n, for the extreme values 
of pressure p, temperature T, salinity S, and wavelength 8 

encountered in hydrologic optics.a 

p 
(Pa) 

T 
(°C) 

S 
(‰) 

8 
(nm) 

n 

1.01×105 0 0 400 1.344186 
1.01 0 0 700 1.331084 
1.01 0 35 400 1.351415 
1.01 0 35 700 1.337906 
1.01 30 0 400 1.342081 
1.01 30 0 700 1.329128 
1.01 30 35 400 1.348752 
1.01 30 35 700 1.335316 
1.08×108 0 0 400 1.360076 
1.08 0 0 700 1.346604 
1.08 0 35 400 1.366885 
1.08 0 35 700 1.352956 
1.08 30 0 400 1.356281 
1.08 30 0 700 1.342958 
1.08 30 35 400 1.362842 
1.08 30 35 700 1.348986 

a Reproduced from Austin and Halikas (1976). 

(S = 0) and for typical sea water (S = 35‰) at atmospheric pressure (p = 105 

Pa).  The values in Table 3.4 can be multiplied by 1.000293 (the index of 
refraction of dry air at STP and 8 = 538 nm) if values relative to vacuum are 
desired.  Millard and Seaver (1990) have developed a 27-term formula that 
gives the index of refraction to part-per-million accuracy over most of the 
oceanographic parameter range. 

The index of refraction of a sample of natural water is also influenced 
by the presence of suspended particulate matter.  The particles found in natural 
waters often have a bimodal index of refraction distribution.  Living 
phytoplankton typically have "low" indices of refraction, in the range 1.01 to 
1.09 relative to the index of refraction of pure seawater.  Detritus and inorganic 
particles generally have "high" indices, in the range of 1.15 to 1.20 relative to 
seawater (Jerlov, 1976).  Typical values are 1.05 for 
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Table 3.4.  Index of refraction of fresh water and of sea water at 
atmospheric pressure, for selected temperatures and wavelengths.a 

Fresh Water (S = 0)
                 Wavelength (nm) 

Temp 
(°C)  400  450  500  550  600  650  700 

0 1.34419 1.34024 1.33741 1.33530 1.33362 1.33225 1.33108 
10 1.34390 1.33997 1.33714 1.33503 1.33336 1.33199 1.33084 
20 1.34317 1.33924 1.33643 1.33433 1.33267 1.33130 1.33016 
30 1.34208 1.33816 1.33537 1.33327 1.33162 1.33026 1.32913 

Sea Water (S = 35‰)
     Wavelength (nm) 

Temp 
(°C)  400  450  500  550  600  650  700 

0 1.35141 1.34734 1.34442 1.34224 1.34050 1.33911 1.33791 
10 1.35084 1.34678 1.34385 1.34167 1.33997 1.33855 1.33738 
20 1.34994 1.34586 1.34295 1.34077 1.33904 1.33765 1.33644 
30 1.34875 1.34469 1.34179 1.33962 1.33790 1.33649 1.33532 

a Data extracted from Austin and Halikas (1976). 

phytoplankton and 1.16 for inorganic particles.  We shall say more about the 
refractive properties of individual particles in Section 3.11. 

3.7 Absorption 

We now turn our attention to the imaginary part of the complex index 
of refraction, i.e. to absorption. 

Measurement of absorption 

Determination of the spectral absorption coefficient a(8) for natural 
waters is a difficult task for several reasons.  First, water itself absorbs only 
weakly at near-UV and blue wavelengths, so that very sensitive instruments are 
required. More importantly, scattering is never negligible, so that 
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careful consideration must be made of the possible aliasing of the absorption 
measurements by scattering effects.  In pure water at wavelengths of 8 = 370 
to 450 nm, molecular scattering provides 20!25% of the total beam 
attenuation, c(8) = a(8) + b(8), (see Table 3.5).  Scattering effects can 
dominate absorption at all visible wavelengths in waters with high particulate 
loads.  Additional complications arise in determining the absorption of pure 
water because of the difficulty of preparing uncontaminated samples.  Many 
techniques have been employed in attempts to determine the spectral 
absorption coefficient for pure water, aw(8); these are reviewed in Smith and 
Baker (1981). 

The absorption by water itself usually is taken as known.  Our real 
interest is directed towards measuring the absorption due to the various 
particulate and dissolved substances in a given water sample.  The highly 
variable absorption by the constituents of a water body helps connect the 
optical properties of the water body with its biogeochemical character. 

Because these constituents usually occur in low concentrations, it is 
necessary to concentrate samples before making absorption measurements. 
This is commonly done by filtering a sample of water to retain the particulate 
matter on a filter pad. The spectral absorption of the particulate matter, a (8),p

is then determined in a spectrophotometer, which measures the light 
transmitted through the filter pad and collected matter.  The filter-pad method 
is the standard way of measuring absorption at sea. 

Even though this technique for determining particulate absorption has 
been in use for many years, the methodology is still evolving because of the 
many types of errors inherent in the filter-pad measurements.  The major 
problem with filter-pad measurements is that the intense scattering within the 
filter pad and collected particles increases the average distance travelled by the 
photons passing through the sample, which increases the apparent absorption. 
Corrections must be applied for this increase in photon path length, and this is 
an uncertain process.  Other sources of error in filter-pad measurements include 
the inability of filters to retain all particles, absorption by dissolved matter 
retained on the filter pad, and decomposition of pigments during the filtration 
process.  The state of the filter-pad art can be seen in Bannister (1988), 
Mitchell (1990), Stramski (1990), and Cleveland and Weidemann (1993).  It 
is also possible to determine the absorption from measurements of light 
reflected by the filter pad, as opposed to transmitted through it.  These two 
methods are compared in Balch and Kilpatrick (1992). 

Laboratory methods for the measurement of absorption in dilute 
suspensions of particles (contained in cuvettes) generally employ 
spectrophotometers (Bricaud, et al., 1983), although photoacoustic effects 
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have been investigated (Trees and Voss, 1990).  These methods give good 
accuracy but are not well suited for the rigors of shipboard use.

 The absorption of pure water, aw(8), can be added to a (8) in order top

obtain the total absorption of an oceanic water sample, assuming that 
absorption by dissolved organic matter (yellow substances) is negligible. 
However, this assumption is not always valid even in the open ocean, and it is 
seldom justified in near-shore waters.  If the absorption by yellow matter, 
a (8), is desired, the sample is first filtered to remove the particles. Then they

absorption of the filtrate is measured, and a (8) is taken to be afiltrate(8) ! aw(8).y

Several novel instruments for the measurement of a(8) are now under 
development.  Some of these attempt to circumvent scattering effects by the 
use of reflecting tubes (Zaneveld, et al., 1990) or integrating cavities (Fry, et 
al., 1992a).  Another (Doss and Wells, 1992) obtains the absorption from 
measurements of certain integrals of the radiance distribution (see Section 
10.2).  Maffione, et al. (1993) used an isotropically emitting source to measure 
the average absorption between the source and the detector.  These instruments 
show promise for avoiding the problems inherent in the filter-pad technique. 
Except for the integrating cavity of Fry, et al., these instruments make in-situ 
measurements of the total absorption, which at present is very difficult (Voss, 
1989).  The extent to which these prototype instruments can be perfected for 
use in routine oceanographic measurements remains to be seen. 

Absorption by pure sea water 

Smith and Baker (1981) made a careful, but indirect, determination of 
the upper bound of the spectral absorption coefficient of pure sea water, aw(8), 
in the wavelength range of oceanographic interest, 200 nm # 8 # 800 nm. 
Their work assumed that for the clearest natural waters, (1) absorption by salt 
or other dissolved substances was negligible, (2) the only scattering was by 
water molecules and salt ions, and (3) there was no inelastic scattering (i.e. no 
fluorescence).  With these assumptions, the inequality (derived from radiative 
transfer theory) 

b
holds.  Here bsw(8) is the spectral scattering coefficient for pure sea water; 

sw(8) was taken as known (from Table 3.8).  Smith and Baker then used 
measured values of the diffuse attenuation function Kd(8) from very clear 
waters (e.g. Crater Lake, Oregon, USA and the Sargasso Sea) to estimate 
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Fig. 3.6.  Absorption (solid line) and scattering (dotted line) coefficients for 
pure sea water, as determined by Smith and Baker (1981). 

aw(8).  Table 3.5 gives their self-consistent values of aw(8), Kd(8), and bsw(8); 
Fig. 3.6 shows aw(8) and bsw(8). 

The Smith and Baker absorption values are widely used.  However, it 
must be remembered that the values of aw(8) in Table 3.5 are upper bounds; the 
true absorption of pure water is likely to be somewhat lower, at least at violet 
and blue wavelengths (Sogandares, et al., 1991). Smith and Baker pointed out 
that there are uncertainties because Kd, an apparent optical property, is 
influenced by environmental conditions.  They also commented that at 
wavelengths below 300 nm, their values are "merely an educated guess."  They 
estimated the accuracy of aw(8) to be within +25% and !5% between 300 and 
480 nm, and +10% to !15% between 480 and 800 nm.  It also should be noted 
that the Smith and Baker values inescapably contain the effects of Raman 
scattering by the water itself. 

Numerical simulations by Gordon (1989a) indicate that a more 
restrictive inequality, 

could be used.  Here Do(8) is the measurable distribution function that corrects 
for the effects of sun angle and sea state on Kd(8), as described in Section 3.2. 
Use of the Gordon inequality could reduce the Smith and Baker absorption 
values by up to 20% at blue wavelengths. And finally, the 
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Table 3.5. Spectral absorption coefficient of pure sea water, aw, as 
determined by Smith and Baker. Values of the molecular scattering 

coefficient of pure sea water, b , and of the diffuse attenuation coefficientsw

Kd used in their computation of a  are also shown.a 
w

8 
(nm) 

aw 

(m!1) 
bsw 

(m!1) 
Kd 

(m!1) 
8 

(nm) 
aw 

(m!1) 
bsw 

(m!1) 
Kd 

(m!1) 

200 3.07 0.151 3.14 500 0.0257 0.0029 0. 0 2  7  1  
210 1.99 0.119 2.05 510 0.0357 0.0026 0. 0 3  7  0  
220 1.31 0.0995 1.36 520 0.0477 0.0024 0. 0 4 8  9  
230 0.927 0.0820 0.968 530 0.0507 0.0022 0. 0  5 1  9  
240 0.720 0.0685 0.754 540 0.0558 0.0021 0. 0  5 6  8  
250 0.559 0.0575 0.588 550 0.0638 0.0019 0. 0 6  4  8  
260 0.457 0.0485 0.481 560 0.0708 0.0018 0. 0 7  1  7  
270 0.373 0.0415 0.394 570 0.0799 0.0017 0. 0 8 0  7  
280 0.288 0.0353 0.306 580 0.108 0.0016 0. 1 0  9  
290 0.215 0.0305 0.230 590 0.157 0.0015 0. 1 5 8 
300 0.141 0.0262 0.154 600 0.244 0.0014 0. 2 4  5  
310 0.105 0.0229 0.116 610 0.289 0.0013 0. 2  9  0  
320 0.0844 0.0200 0.0944 620 0.309 0.0012 0. 3 1  0  
330 0.0678 0.0175 0.0765 630 0.319 0.0011 0. 3 2 0 
340 0.0561 0.0153 0.0637 640 0.329 0.0010 0. 3 3  0  
350 0.0463 0.0134 0.0530 650 0.349 0.0010 0. 3  5  0  
360 0.0379 0.0120 0.0439 660 0.400 0.0008 0. 4 0  0  
370 0.0300 0.0106 0.0353 670 0.430 0.0008 0. 4 3 0 
380 0.0220 0.0094 0.0267 680 0.450 0.0007 0. 4 5  0  
390 0.0191 0.0084 0.0233 690 0.500 0.0007 0. 5  0  0  
400 0.0171 0.0076 0.0209 700 0.650 0.0007 0. 6 5  0  
410 0.0162 0.0068 0.0196 710 0.839 0.0007 0. 8 3 4 
420 0.0153 0.0061 0.0184 720 1.169 0.0006 1. 1 7  0  
430 0.0144 0.0055 0.0172 730 1.799 0.0006 1. 8  0  0  
440 0.0145 0.0049 0.0170 740 2.38 0.0006 2. 3 8  0  
450 0.0145 0.0045 0.0168 750 2.47 0.0005 2. 4  7 
460 0.0156 0.0041 0.0176 760 2.55 0.0005 2. 5  5 
470 0.0156 0.0037 0.0175 770 2.51 0.0005 2. 5  1 
480 0.0176 0.0034 0.0194 780 2.36 0.0004 2. 3  6 
490 0.0196 0.0031 0.0212 790 2.16 0.0004 2. 1  6 

800 2.07 0.0004 2. 0  7 

a Reproduced from Smith and Baker (1981), with permission. 
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Smith and  Baker measurements were not made in optically pure water, but 
rather in the "clearest natural waters."  Even these waters contain a small 
amount of dissolved and particulate matter, which will contribute something 
to both absorption and scattering. 

There is evidence (Pegau and Zaneveld, 1992) that absorption by water 
is weakly dependent on temperature, at least in the red and near infrared (Ma/MT 
. 0.0015 m!1 °K!1 at 8 = 600 nm and Ma/MT . 0.01 m!1 °K!1 at 8 = 750 nm), 
and perhaps also slightly dependent on salinity. 

Absorption by dissolved organic matter 

Absorption by yellow matter (CDOM or gelbstoff) is reasonably well 
described by the model (Bricaud, et al., 1981) 

(3.25) 

over the range 350 nm # 8 # 700 nm. Here 8o is a reference wavelength, often 
chosen to be 8o = 440 nm, and ay(8o) is the absorption due to yellow matter at 
the reference wavelength.  The value of a (8) of course depends on they

concentration of yellow matter in the water.  The exponential decay constant 
depends on the relative proportion of specific types of yellow matter; other 
studies have found exponent coefficients of !0.014 to !0.019 (Roesler, et al., 
1989, their Table 1).  Both total concentration and proportions are highly 
variable. 

Table 3.6 gives measured values of ay(440) for selected waters. 
Because of the variability in yellow matter concentrations, the values found in 
Table 3.6 have little general validity even for the particular water bodies 
sampled, but they do serve to show representative values and the range of 
influence of yellow matter in determining the total absorption.  Although the 
above model allows the determination of spectral absorption by yellow matter 
if the absorption is known at one wavelength, no model yet exists that allows 
for the direct determination of a (8) from given concentrations of yellow matter y

constituents. 

Absorption by phytoplankton 

Phytoplankton cells are strong absorbers of visible light and therefore 
play a major role in determining the absorption properties of natural waters. 
Absorption by phytoplankton occurs in various photosynthetic pigments, of 
which the chlorophylls are best known to nonspecialists.  Absorption by 
chlorophyll itself is characterized by strong absorption bands in the blue and 
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Table 3.6.  Measured absorption coefficient at 8 = 440 nm due to yellow 
matter, ay(440), for selected waters.a 

Water body ay(440)
 (m!1) 

Oceanic waters
    Sargasso Sea . .0 

off Bermuda 0.01
    Gulf of Guinea 0.024-0.113
    oligotrophic Indian Ocean 0.02
    mesotrophic Indian Ocean 0.03
    eutrophic Indian Ocean 0.09 

Coastal and estuarine waters
 North Sea 0.07
 Baltic Sea 0.24

    Rhone River mouth, France 0.086-0.572
    Clyde River estuary, Australia 0.64 

Lakes and rivers
 Crystal Lake, Wisconsin, USA 0.16

    Lake George, Australia 0.69-3.04
 Lake George, Uganda  3.7

    Carrao River, Venezuela 12.44
 Lough Napeast, Ireland 19.1 

a Condensed from Kirk (1983), with permission of Cambridge University 
Press, copyright 1983. 

in the red (peaking at 8 . 430 and 665 nm, respectively, for chlorophyll a), 
with very little absorption in the green.  Chlorophyll occurs in all 
photosynthetic plants, and its concentration in milligrams of chlorophyll per 
cubic meter of water is commonly used as the relevant optical measure of 
phytoplankton abundance.  In practice, the term "chlorophyll concentration" 
usually refers to the sum of chlorophyll a, the main pigment in phytoplankton 
cells, and the related pigment pheophytin a. This sum is often called the 
"pigment concentration."  Chlorophyll concentrations for various waters range 
from 0.01 mg m!3 in the clearest open ocean waters, 
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to 10 mg m!3 in productive coastal upwelling regions, to 100 mg m!3 in 
eutrophic estuaries or lakes.  The globally averaged, near-surface, open-ocean 
value is in the neighborhood of 0.5 mg m!3. 

The absorbing pigments are not evenly distributed within 
phytoplankton cells, but are localized into small "packages" (chloroplasts), 
which are distributed nonrandomly throughout the cell.  This localized 
distribution of pigments means that the spectral absorption by a phytoplankton 
cell, or by a collection of cells in water, is "flatter" (has less pronounced peaks 
and reduced overall absorption) than if the pigments were uniformly distributed 
throughout the cell, or throughout the water (Kirk, 1983).  This so-called 
"pigment packaging effect" is a major source of both inter- and intra-species 
variability in spectral absorption by phytoplankton, because the details of the 
pigment packaging within cells depend not only on species but also on a cell's 
size and physiological state (which in turn depends on environmental factors 
such as ambient lighting and nutrient availability).  Another source of 
variability in addition to chlorophyll a concentration and packaging is changes 
in pigment composition (the relative proportions of accessory pigments, 
namely chlorophylls b and c, pheopigments, biliproteins, and carotenoids), 
since each pigment displays a characteristic absorption curve.  The spectral 
absorption characteristics of these accessory pigments can be seen in Kirk 
(1983); tabulated values are given in Bidigare, et al., (1990). 

A qualitative feel for the nature of phytoplankton absorption can be 
obtained from Fig. 3.7, which is based on absorption measurements from eight 
different single-species laboratory phytoplankton cultures (Sathyendranath, et 
al., 1987).  Measured spectral absorption coefficients for the eight cultures, 
ai(8), i = 1 to 8, were first reduced by subtracting ai(737) to remove the effects 
of absorption by detritus and cell constituents other than pigments:  the 
assumption is that pigments do not absorb at 8 = 737 nm and that the residual 
absorption is wavelength independent (which is a crude approximation).  The 
resulting curves were then normalized by the chlorophyll concentrations Ci of 
the respective cultures to generate the chlorophyll-specific spectral absorption 
curves for phytoplankton, ai 

*(8): 

which are plotted in Fig. 3.7. 
Several general features of phytoplankton absorption are seen in Fig. 

3.7:  there are distinct absorption peaks at 8 . 440 and 675 nm; the blue peak 
is one to three  times as high as  th e red one  (for a given species) due 
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Fig. 3.7.  Chlorophyll-specific spectral absorption coefficients for eight species 
of phytoplankton.  [redrawn from Sathyendranath, et al. (1987), by permission] 

to the contribution of accessory pigments to absorption in the blue; and there 
is relatively little absorption between 550 and 650 nm, with the absorption 
minimum near 600 nm being 10% to 30% of the value at 440 nm.  There is 
clearly considerable variability in the phytoplankton absorption curves even for 
laboratory cultures.  The variability of a *(8) in naturally occurring populations 
of phytoplankton scarcely has been studied but likely is at least as great as that 
seen in Fig. 3.7.  Similar curves can be seen in Bricaud, et al., (1988), along 
with the corresponding chlorophyll-specific scattering and attenuation 

*coefficients, b* and c . 

Absorption by organic detritus 

It is not easy to separate the contributions of living phytoplankton and 
of nonliving detritus to the total particulate absorption as measured by any of 
the previously mentioned methods.  A number of ways to achieve this 
separation have been investigated:  (1) direct examination of individual 
particles using microspectrophotometry (Iturriaga and Siegel, 1989); (2) filter-
pad measurements made before and after chemical extraction of phytoplankton 
pigments (e.g. Kishino, et al., 1985); (3) modeling based on an assumed ratio 
of phytoplankton absorption at two wavelengths in the blue 
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and red (Roesler, et al., 1989); (4) statistical methods based on typical 
absorption spectra of phytoplankton and detritus (Morrow, et al., 1989); and 
(5) modeling based on an assumed functional form for detrital absorption 
(Bricaud and Stramski, 1990). 

These diverse measurement methods all yield the same functional form 
for absorption by detritus, adet(8), as was seen in Eq. (3.25) for absorption by 
yellow matter. Roesler, et al. (1989) found that the model 

(3.26) 

provides a satisfactory fit to detrital absorption curves.  Other studies have 
found detrital exponent coefficients of !0.006 to !0.014 (Roesler, et al., their 
Table 1). 

a
Figure 3.8 shows the contributions of absorption by phytoplankton, 

ph(8), and of absorption by detritus, adet(8), [as partitioned by the method of 
Iturriaga and Siegel (1989)] to the independently measured (by the filter-pad 
technique) total particulate absorption, a (8), for two depths at the same p

Atlantic location.  The small residual, )ap(8) = a (8) ! aph(8) ! adet(8) shownp

in the figure is attributed either to errors in the determination of the 
phytoplankton and detrital parts (particles smaller than -3 :m were not 
analyzed) or to contamination by dissolved organic matter of the filter-pad 
measurements of total particulate absorption.  Note that at the shallow depth 
the phytoplankton are relatively more important at blue wavelengths, whereas 
the detritus is slightly more important at the deeper depth.  There is no 
generality in this result (other locations showed the reverse) – it merely 
illustrates the variability possible in water samples taken only 60 vertical 
meters apart.  The important feature to note in Fig. 3.8 is the general shape of 
the spectral absorption curve for detritus. 

Bio-optical models for absorption 

Depending on the concentrations of dissolved substances, 
phytoplankton, and detritus, the total spectral absorption coefficient of a given 
water sample can range from almost identical to that of pure water to one 
which shows orders-of-magnitude greater absorption than pure water, 
especially at blue wavelengths.  Figure 3.9 shows some a(8) profiles from 
various natural waters.  Figure 3.9(a) shows absorption profiles measured in 
phytoplankton-dominated waters where chlorophyll concentrations ranged 
from C = 0.2 to 18.4 mg m!3. In essence, the absorption is high in the blue 
because of absorption by phytoplankton pigments, and high in the red because 
of absorption by the water.  Figure 3.9(b) shows the absorption at 
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Fig. 3.8.  Examples of the relative contributions of absorption by 
phytoplankton, aph(8), and by organic detritus, adet(8), to the total particulate 
absorption a (8), from Sargasso Sea waters.  [redrawn from Iturriaga andp

Siegel (1989), by permission] 

three locations where C . 2 mg m!3 but where the scattering coefficient b 
varied from 1.55 to 3.6 m!1, indicating that nonpigmented particles were 
playing an important role in determining the shape of a(8). Figure 3.9(c) 
shows curves from waters rich in yellow matter, which is causing the high 
absorption in the blue.  One of the goals of bio-optics is to develop predictive 
models for absorption curves such as those seen in Fig. 3.9. 

Case 1 waters are waters in which the concentration of phytoplankton 
is high compared to nonbiogenic particles (Morel and Prieur, 1977). 
Absorption by chlorophyll and related pigments therefore plays a major role 
in determining the total absorption coefficient in such waters, 
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Fig. 3.9.  Examples of spectral absorption coefficients a(8) for various waters. 
Panel (a) shows a(8) for waters dominated by phytoplankton, panel (b) is for 
waters with a high concentration of nonpigmented particles, and panel (c) is 
for waters rich in yellow matter.  [based on Prieur and Sathyendranath (1981), 
by permission] 

although detritus and dissolved organic matter derived from the phytoplankton 
also contribute to absorption in case 1 waters.  Case 1 water can range from 
very clear (oligotrophic) water to very turbid (eutrophic) water, depending on 
the phytoplankton concentration.  Case 2 waters are "everything else," namely 
waters where inorganic particles or dissolved organic matter from land 
drainage dominate, so that absorption by pigments is relatively less important 
in determining the total absorption.  (The case 1 and 2 classifications must not 
be confused with the Jerlov water types 1 and 2, discussed in Section 3.10, 
below.  Note also that "case 1" and "case 2" are not synonyms for "open 
ocean" and "coastal" water.)  Roughly 98% of the world's open ocean and 
coastal waters fall into the case 1 category, and almost all bio-optical research 
has been directed toward these phytoplankton-dominated waters.  However, 
near-shore and estuarine case 2 waters are disproportionately important to 
human interests such as recreation,  fisheries, and military operations.  It is 
therefore likely that case 2 waters will receive increasing attention in coming 
years. 

Prieur and Sathyendranath (1981) developed a pioneering bio-optical 
model for the spectral absorption coefficient of case 1 waters.  Their model 
was statistically derived from 90 sets of spectral absorption data taken in 
various case 1 waters and included absorption by phytoplankton pigments, by 
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nonpigmented organic particles derived from deceased phytoplankton, and by 
yellow matter derived from decayed phytoplankton.  The contribution of 
phytoplankton to the total absorption was parameterized in terms of the 
chlorophyll concentration C (i.e. chlorophyll a plus pheophytin a). The 
contributions of nonpigmented particles and of yellow matter were 
parameterized in terms of both the chlorophyll concentration and the total 
scattering coefficient at 8 = 550 nm, b(550). The essence of the Prieur-
Sathyendranath model is contained in a more recent and simpler variant given 
by Morel (1991b): 

(3.27) 

Here aw(8) is the absorption coefficient of pure water and ac
*N(8) is a 

nondimensional, statistically derived chlorophyll-specific absorption 
coefficient; aw(8) and ac 

*N(8) values are given in Table 3.7 [these aw(8) values 
are slightly different than those of Table 3.5].  When C is expressed in mg m!3 

and 8 is in nm, the resulting a(8) is in m!1.  Figure 3.10 shows a(8) as 
predicted by Eq. (3.27) for various chlorophyll concentrations.  The predicted 
a(8) values are qualitatively similar to the measured a(8) of Fig. 3.9(a), 
although the magnitudes sometimes differ, especially for the higher 
chlorophyll concentrations. 

Table 3.7. Absorption by pure sea water, a , and the nondimensional w

chlorophyll-specific absorption coefficient, a *N, for use in Eq. (3.27).a 
c 

8 
(nm) 

aw 

(m!1) 
ac 

*N 8 
(nm) 

aw 

(m!1) 
ac 

*N 8 
(nm) 

aw 

(m!1) 
ac 

*N 

400 0.018 0.687 500 0.026 0.668 600 0.245 0.236 
410 0.017 0.828 510 0.036 0.618 610 0.290 0.252 
420 0.016 0.913 520 0.048 0.528 620 0.310 0.276 
430 0.015 0.973 530 0.051 0.474 630 0.320 0.317 
440 0.015 1.000 540 0.056 0.416 640 0.330 0.334 
450 0.015 0.944 550 0.064 0.357 650 0.350 0.356 
460 0.016 0.917 560 0.071 0.294 660 0.410 0.441 
470 0.016 0.870 570 0.080 0.276 670 0.430 0.595 
480 0.018 0.798 580 0.108 0.291 680 0.450 0.502 
490 0.020 0.750 590 0.157 0.282 690 0.500 0.329 

700 0.650 0.215 

a Condensed with permission from Prieur and Sathyendranath (1981), who 
give values every 5 nm. 
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Fig. 3.10.  Total spectral absorption coefficient a(8) for selected chlorophyll 
concentrations C, as predicted by Eq. (3.27). 

The bio-optical model for absorption expressed by Eq. (3.27) is 
frequently used; we shall see it in action in Section 11.8.  However, its 
limitations must be kept in mind.  For example, the model assumes that the 
absorption by yellow matter covaries with that due to phytoplankton; i.e. it 
assumes that a fixed percentage of the total absorption at a given wavelength 
always comes from yellow matter.  The general validity of this assumption is 
doubtful even for open ocean waters:  Bricaud, et al. (1981) show data (their 
Fig. 5) for which a(375), used as an index for yellow matter concentration, is 
uncorrelated with chlorophyll concentration even in oceanic regions 
uninfluenced by fresh-water runoff.  The model also assumes that the same 
(average) chlorophyll-specific absorption coefficient ac

*N(8) is valid for all 
biological particles, which is almost certainly not the case.  And finally, the 
model is intended for use only in phytoplankton-dominated, case 1 waters. 

Other bio-optical models for absorption have been developed, but each 
has its own imperfections.  Gordon (1992) has developed a model that avoids 
assuming any relation between yellow matter and phytoplankton. However, 
his model becomes singular as C 6 0.01 mg m!3 and cannot be expected to 
work well for C much less than 0.1 mg m!3. A model by Kopelevich (1983) 
has the chlorophyll contribution proportional to the concentration C, whereas 
the model of Eq. (3.27) has C0.65. The exponent  
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of 0.65 is probably closer to reality, since it reflects a change in the relative 
contributions to absorption by phytoplankton and by detritus as the 
chlorophyll concentration changes (absorption by detritus is relatively more 
important at low chlorophyll concentrations).  Moreover, the chlorophyll-
specific absorption curve used in the Kopelevich model is based on laboratory 
cultures of phytoplankton, whereas the work by Prieur and Sathyendranath 
used in situ observations to derive the ac

*N(8) values of Table 3.7 – an 
additional point in favor of Eq. (3.27).  Any of these bio-optical models for 
absorption is useful, but each is imperfect.  They may – or may not – give 
correct average values, but they give no information about the variability of 
a(8).  It can be anticipated that the simple models now available will in time 
be replaced, perhaps by models designed for specific regions and seasons, as 
better understanding of the variability inherent in spectral absorption is 
achieved. 

3.8 Scattering 

At the most fundamental, microscopic level, all scattering arises from 
interactions between photons and molecules or atoms.  Nevertheless, 
scattering in natural waters is conveniently viewed as being caused by small-
scale (<< 8) density fluctuations attributable to random molecular motions, by 
the ubiquitous large (> 8) organic and inorganic particles, and by large-scale 
(>> 8) turbulence-induced fluctuations in the real index of refraction.  The 
convenience of these ill-defined size categories lies not in their delineation of 
fundamental physical processes, but rather in the approximate mathematical 
theories used to describe scattering in the various size domains. 

Small-scale scattering by water molecules (and by salt ions, in 
seawater) determines the minimum values for the scattering properties. As is 
the case for absorption, however, the scattering properties of natural waters 
are greatly modified by the particulate matter that is always present. 

Measurement of scattering 

Scattering measurements are even more difficult to make than are 
absorption measurements.  The conceptual design of an instrument for 
measuring the volume scattering function $(R;8) is no more complicated than 
Fig. 3.1 and the defining Eq. (3.4), $(R;8) = Is(R;8)/[Ei(8) )V]: a collimated 
beam of known spectral irradiance Ei(8) illuminates a given volume of water 
)V, and the scattered intensity Is is measured as a function 
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of scattering angle and wavelength.  However, the engineering of instruments 
capable of the in situ determination of $(R;8) is quite difficult.  The 
magnitude of the scattered intensity typically increases by five or six orders 
of magnitude in going from R = 90° to R = 0.1° for a given natural water 
sample, and scattering at a given angle R can vary by two orders of magnitude 
among water samples.  The required dynamic range of an instrument is 
therefore great.  Corrections must be made for absorption within the sample 
volume, and also for attenuation along the incident and scattered beam paths 
for in situ instruments. The rapid change in $(R;8) at small scattering angles 
requires very precise alignment of the optical elements, but rolling ships seem 
designed to knock things out of alignment – a point that may not be 
appreciated by those used to the luxury of optical benches.  Because of these 
design difficulties, only a few one-of-a-kind instruments have been built for 
in situ measurement of the volume scattering function, and measurements of 
$(R;8) are not routinely made.  Petzold (1972) gives the details of two such 
instruments, one for small scattering angles (R = 0.085°, 0.17°, and 0.34°) and 
one for larger angles (10° # R # 170°); these are the instruments used to 
obtain the data presented in Table 3.10, below.  The large-angle Petzold 
instrument is still in use over 30 years after its construction.  Other 
instruments are described in Kirk (1983) and in Jerlov (1976). 

Commercial instruments are available for laboratory measurement of 
$(R;8) at fixed scattering angles, e.g. R every 5° from -20° to -160°. These 
instruments are subject to their own problems, such as degradation of samples 
between the times of collection and measurement.  Moreover, measurements 
of $(R;8) over a limited range of R are not sufficient for determination of b(8) 
by integration as in Eq. (3.5).  In practice, the scattering coefficient b(8) is 
usually determined by the conservation of energy relation b(8) = c(8) ! a(8), 
after measurements of beam attenuation and absorption have been made. The 
backscatter coefficient bb(8) can be measured in the laboratory using a 
spectrophotometer combined with an integrating sphere (Bricaud, et al., 
1983). 

Both in situ and laboratory instruments sample small (-1 cm3) 
volumes of water and therefore may fail to detect the presence of optically 
significant large aggregates (marine snow), if such particles are too few in 
number to be reliably captured in the sample volume.  Such particles, 
however, can affect the scattering properties of large volumes of water as are 
seen, for example, in remote sensing or underwater visibility studies. 

Measurements at near forward (R < 1°) and near backward (R > 179°) 
angles are exceptionally difficult to make, yet the behavior of $(R;8) at these 
extreme angles is of considerable interest. Accurate determination 
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of $ at small angles is crucial to the determination of b by integration, since 
typically one-half of all scattering takes place at angles of less than a few 
degrees. Scattering at small angles is important in underwater imaging, and 
it is of theoretical interest for its connections to scattering theory, particle 
optical properties, and particle size distributions.  The behavior of $ very near 
R = 180° is important in laser remote-sensing applications. 

Spinrad, et al. (1978), Padmabandu and Fry (1990), and Fry, et al. 
(1992b) have reported measurements at very small angles on suspensions of 
polystyrene spheres, but no such measurements have been published for 
natural water samples.  The Padmabandu and Fry technique is notable in that 
it allows the measurement of $ at R = 0° exactly, by use of the coupling of 
two coherent beams in a photorefractive crystal to measure the phase shift that 
corresponds to 0° scattering.  Measurement of $(0;8) is of theoretical interest 
because of its relation to attenuation via the optical theorem (Bohren and 
Huffman, 1983). 

Enhanced backscatter has been reported in suspensions of latex 
spheres; a factor-of-two increase in scattered intensity between R = 179.5° 
and 180.0° is typical (Kuga and Ishimaru, 1989).  Laboratory studies show 
that small (<300 :m) air bubbles in water also can generate enhanced 
backscatter (Arnott and Marston, 1988).  Preliminary measurements in natural 
waters (Maffione and Honey, 1992) show only about a 10% increase in $(R) 
as R goes from 179.5° to 180.0°, but this matter is still under investigation. 

Very few measurements of the full Mueller scattering matrix have 
been made in oceanic waters; these are discussed in Section 5.13. 

Scattering by pure water and by pure sea water 

Raman (1922) and Shuleikin (1922) first pointed out the fundamental 
role played by small-scale scattering in natural waters.  Raman's delightful 
paper carefully refuted Lord Rayleigh's assertion that "The much-admired 
dark blue of the deep sea has nothing to do with the colour of the water, but 
is simply the blue of the sky seen by reflection."  Raman's paper may still be 
read with profit. 

Morel (1974) has reviewed in detail the theory and observations 
pertaining to scattering by pure water and by pure sea water.  As we 
mentioned in Section 3.6, random molecular motions give rise to fluctuations 
in the number of molecules in a given volume )V, where )V is small 
compared to the wavelength of light but large compared to atomic scales (so 
that the liquid within the volume is adequately described by statistical 
thermodynamics). The Einstein-Smoluchowski theory of 
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scattering relates these fluctuations in molecule number density to associated 
fluctuations in the index of refraction, which give rise to scattering.  In sea 
water the basic theory is the same, but random fluctuations in the 
concentrations of the various ions (Cl!, Na+, etc.) give somewhat greater index 
of refraction fluctuations, and hence greater scattering.  The net result of these 
considerations is that the volume scattering function for either pure water or 
for pure sea water has the form 

(3.28) 

This equation is reminiscent of the form 

(3.29) 

of 8
which is commonly called Rayleigh scattering.  The wavelength dependence 

!4.32 (rather than 8!4) results from the wavelength dependence of the index 
of refraction.  The 0.835 factor (rather than 1) is attributable to the anisotropy 
of the water molecules. 

The phase function corresponding to Eq. (3.28) is 

(3.30) 

and the total scattering coefficient bw(8) is given by 

(3.31) 

Table 3.8 gives values of $w(90°;8) and bw(8) for selected 
wavelengths, for both pure water and pure sea water (S = 35!39‰). Note that 
the pure sea water values are about 30% greater than the pure water values, 
at all wavelengths.  Table 3.9 shows the dependence of bw(546 nm) on 
pressure, temperature, and salinity.  Note that the scattering decreases as 
decreasing temperature or increasing pressure reduce the small-scale 
fluctuations. 

Oceanographers commonly, and somewhat incorrectly, refer to 
scattering by pure water as "Rayleigh" scattering because of the previously 
noted similarity between $w in Eq. (3.28) and $Ray in Eq. (3.29).  Strictly 
speaking, though, Rayleigh considered scattering by very small spherical 
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Table 3.8.  The volume scattering function at R = 90°, $(90°;8), and the 
scattering coefficient b(8) for pure water and for pure sea water (S = 35­

39‰). All numbers in the body of the table are times 10!4, as shown in the 
first row.a

 pure water pure sea water 

b8 $w(90°) bw
b $sw(90°) bsw 

(nm) (m!1 sr!1) (m!1) (m!1 sr!1) (m!1) 

350 6.47×10!4 

375 4.80 
400 3.63 
425 2.80 
450 2.18 
475 1.73 
500 1.38 
525 1.12 
550 0.93 
575 0.78 
600 0.68 

103.5×10!4 8.41×10!4134.5×10!4 
76.8 6.24 99.8 
58.1 4.72 75.5 
44.7 3.63 58.1 
34.9 2.84 45.4 
27.6 2.25 35.9 
22.2 1.80 28.8 
17.9 1.46 23.3 
14.9 1.21 19.3 
12.5 1.01 16.2 
10.9 0.88 14.1 

a Reproduced from Morel (1974), with permission. 
b Computed from b(8) = 16.0 $(90°;8). 

Table 3.9.  Computed scattering coefficient b of pure water (S = 0) and of 
pure sea water (S = 35‰) at 8 = 546 nm as a function of temperature T and 

apressure p. Numbers in the body of the table have units of m!1. 

p = 105 Pa p = 107 Pa p = 108 Pa 
(1 atm) (100 atm) (1000 atm) 

T 
(°C) S = 0 S = 35‰ S = 0 S = 35‰ S = 0 S = 35‰ 

0 0.00145 0.00195 0.00140 0.00192 0.00110 0.00167 
10 0.00148 0.00203 0.00143 0.00200 0.00119 0.00176 
20 0.00149 0.00207 0.00147 0.00204 0.00125 0.00183 
40 0.00150 0.00213 0.00149 0.00212 0.00136 0.00197 

a Data extracted from the more extensive table of Shifrin (1989), with 
permission. 
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particles, which he modeled as electric dipoles.  (Only much later did Rayleigh 
identify these particles with molecules.)  Einstein and Smoluchowski 
considered scattering by small-scale fluctuations.  It is not coincidental that 
these two different approaches lead to the same general form for $(R;8). 
However, to be precise and to give credit where it is due, scattering by pure 
water as described by Eq. (3.28) should be called "fluctuation" scattering or 
"Einstein-Smoluchowski" scattering.  Young (1982) gives an interesting 
history of the erroneous eponomy connected with Rayleigh's name. 

Scattering by particles 

Heroic efforts are required to obtain water of sufficient purity that the 
volume scattering function of Eq. (3.28) is observed.  As soon as there is a 
slight amount of particulate matter in the water – always the case for even the 
clearest natural water – the volume scattering function becomes highly peaked 
in the forward direction, and the scattering coefficient increases by at least a 
factor of ten. 

The contribution of the particulate matter to the total volume scattering 
function $(R;8) is obtained from 

(3.32) 

Here the subscript p refers to particles, and w refers to pure water (if $ is 
measured in fresh water) or pure sea water (for oceanic measurements).  Figure 
3.11 shows several particle volume scattering functions determined from in 
situ measurements of $(R;8) in a variety of waters ranging from very clear to 
very turbid.  The particles cause at least a four-order-of-magnitude increase in 
scattering between R . 90° and R . 1°.  The contribution of molecular 
scattering to the total is therefore completely negligible except at backscattered 
directions (R $ 90°) in the clearest natural waters (Morel and Gentili, 1991). 
The top curve in Fig. 3.11 is shown for small scattering angles in Fig. 3.12. 
The scattering function shows no indication of "flattening out" even at angles 
less than 0.01° (see additional data in Honey and Sorenson, 1970).  Note that 
the scattering function increases by a factor of 100 over only a one-degree 
range of scattering angle. 

Highly peaked forward scattering like that seen in Figs. 3.11 and 3.12 
is characteristic of diffraction-dominated scattering in a polydisperse system 
(a system containing particles of many different sizes).  Scattering by 
refraction and reflection from particle surfaces becomes important at 
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Fig. 3.11. Particle volume 
scattering functions $ (R;8)p

determined from in situ 
measurements in various waters; 
wavelengths vary.  [redrawn from 
K u l l  e n b e r g  ( 1 9 7 4 ) ,  b  y  
permission] 

Fig. 3.12.  Detail of the forward 
scattering values of the "lake" volume 
scattering function seen in the top 
curve of Fig. 3.11.  [redrawn from 
H.O. I] 

large scattering angles (R > 15°).  Mie scattering calculations (see Section 
3.11) are able to reproduce observed volume scattering functions, except at 
very small angles, given the proper particle optical properties and size 
distributions. 
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Scattering by turbulence 

Mie theory (discussed in Section 3.11) predicts that the volume 
scattering function should flatten out at very small angles, i.e. d$(R)/dR 6 0 
as R 6 0. This behavior has been observed for R # 1° in laboratory 
suspensions of polystyrene spheres (Spinrad, et al., 1978) but not in natural 
waters, even for scattering angles less than 0.01°.  Evidence indicates that this 
continued rise in $(R) for R < 1° may be attributed to turbulence.  Small 
temperature and salinity fluctuations occur in natural waters on scales of 
millimeters and larger.  The associated fluctuations in the real index of 
refraction cause small angular deviations in light rays propagating through the 
water. 

We can get a feeling for the size of the turbulence-induced fluctuations 
in the real index of refraction n, as follows. Let us hold the wavelength 8 and 
pressure p constant, so that n is a function only of the temperature T and 
salinity S. Then taking differentials of n(T,S) gives 

where )T and )S are small fluctuations in T and S, and )n is the 
corresponding change in n. If we square this equation, average it over many 
turbulent fluctuations, and assume that the fluctuations in temperature and 
salinity are uncorrelated, we obtain 

(3.33) 

Here + , represents the average of the enclosed quantity.  The root-mean-square 
2 ½(rms) value of the index-of-refraction fluctuations is then +()n) , . The 

derivatives Mn/MT and Mn/MS must be evaluated at particular values of T, S, 8 
and p. We can estimate typical values from Fig. 3.5 or, better yet, from the 
tabulated data in Austin and Halikas (1976), from which this figure was drawn. 
Let us take T = 20°C, S = 35‰, 8 = 546 nm, and p = 1 atm. Then from the 
data corresponding to the left-hand panel of Fig. 3.5, we find that 

From the data underlying the middle panel of Fig. 3.5 we get 
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Now let us suppose that the temperature fluctuations are of magnitude )T . 
0.005°C, and that )S . 0.005‰. Then Eq. (3.33) gives 

The turbulence-induced fluctuations in the index of refraction are therefore on 
the order of parts per million. 

Such small changes in n are negligible compared to the 5% 
"fluctuation" in n when a photon encounters a plankton cell with n = 1.05 
(relative to the water).  However, in the case of particle scattering, we envision 
photons traveling in straight lines between the occasional encounter with a 
particle, at which time there may be a large change in direction.  In the case of 
turbulence, we envision many turbulent blobs of water, of many sizes, with the 
photons slightly but continuously changing direction as they pass through 
water with a continuously varying index of refraction.  It is then possible for 
the cumulative effect of the turbulent fluctuations to change a photon's 
direction by a small fraction of a degree.  These turbulence-induced deviations 
manifest themselves in time-averaged scattering measurements as large values 
of $ at very small scattering angles. 

Turbulence-induced scatter can significantly degrade the quality of 
underwater images.  The effects of turbulence are especially noticeable in 
motion-picture photography, since the time dependence of the random 
fluctuations is then apparent, just as it is with the twinkling of stars caused by 
atmospheric turbulence.  Near the boundary between distinctly different water 
masses, the fluctuations in T and S can be much larger than those assumed 
above, and even still images can be badly degraded; examples can be seen in 
Gilbert and Honey (1972). 

These turbulence effects have been intensively studied by those 
interested in atmospheric optics, but have been ignored by most of the 
hydrologic optics community.  This is often justified, since the changes in n 
within water bodies usually are very small and do not significantly effect the 
distribution of radiant energy within the water (Duntley, 1974).  The exception 
is found in the community of researchers interested in high-resolution 
underwater visibility and imaging, and in the behavior of coherent light beams. 
A pioneering study of the effects of turbulence on underwater images is found 
in Chilton, et al. (1969). 

However, turbulence-induced scatter is unimportant in the overall 
redistribution of radiant energy in lakes and oceans.  The purpose of our 
discussion here is to explain qualitatively the observed small-angle behavior 
of volume scattering functions.  Because the time-averaged effects of 
turbulence are included in measured volume scattering functions, we have 
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no need to pursue this topic further.  We do note, however, that although 
monochromatic, small-angle measurements of $ do not distinguish between 
scattering by particles and by turbulence, it may be possible to separate the two 
effects by considering the wavelength dependence of $, differences in 
polarization, or the time dependence of radiance fluctuations in a narrow 
collimated beam.  Little work has been done along these lines.  We also note 
that detailed numerical simulations of the optical effects of turbulence 
(Bogucki, et al., 1993) may lead to new applications of "optical turbulence" as 
a probe of oceanic microstructure. 

Petzold's measurements of volume scattering functions 

The most carefully made and widely cited scattering measurements are 
found in Petzold (1972).  Figure 3.13(a) shows three of his $(R;8) curves 
displayed on a log-log plot to emphasize the forward scattering angles.  The 
same data are displayed on log-linear axes in Fig. 3.13(b).  The instruments he 
used had a spectral response centered at 8 = 514 nm with a bandwidth of 75 
nm (full width at half maximum).  The top curve was obtained in the very 
turbid water of San Diego Harbor, California; the center curve comes from 
near-shore coastal water in San Pedro Channel, California; and the bottom 
curve is from very clear water in the Tongue of the Ocean, Bahama Islands. 
The striking feature of these volume scattering functions (and those of Fig. 
3.11) from very different waters is the similarity of their shapes. 

Although the scattering coefficients b of the curves in Fig. 3.13 vary by 
a factor of 50 (see Table 3.11), the uniform shapes suggest that it is reasonable 
to define a "typical" particle phase function (R). This has been done with p

three sets of Petzold's data from waters with a high particulate load (one set 
being the top curve of Fig. 3.13), as follows (Mobley, et al., 1993): (1) 
subtract $w(R;8=514) from each curve to get three particle volume scattering 

ifunctions $ (R), i = 1,2,3; (2) obtain the corresponding particle scattering p 

coefficients from b i = bi ! bw; (3) compute three particle phase functions via p
i i(R) = $ (R)/b i; (4) average the three particle phase functions at each p p p 

scattering angle to define the typical particle phase function (R).  Table 3.10p

displays the three Petzold volume scattering functions plotted in Fig. 3.13, the 
volume scattering function for pure sea water, and the average particle phase 
function computed as just described.  This particle phase function satisfies the 
normalization (3.8), if a behavior of - R!m is assumed for R < 0.1° and ap 

trapezoidal rule integration is used for R $ 0.1°, with linear interpolation used 
Here m = 1.346 is the negative of the slope ofbetween the tabulated values.  

log vs.p
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Fig. 3.13.  Measured volume scattering functions $ (solid lines) from three 
different natural waters, and the computed volume scattering function for pure 
sea water, all at 8 = 514 nm. The dotted line is the particle phase function p 

of Table 3.10.  [redrawn from Petzold (1972)] 



3.8 Scattering 111 

Table 3.10.  Volume scattering functions $(R;8) for three oceanic waters 
and for pure sea water, and a typical particle phase function (R;8), all atp

8 = 514 nm. These values are plotted in Fig. 3.13.

    Volume scattering functions (m!1 sr!1) Particle
 Scattering phase 

angle 
(deg) 

clear 
oceana 

coastal 
oceana 

turbid 
harbora 

pure sea 
waterb 

functionc 

(sr!1) 

0.100 5.318×101 6.533×102 3.262×103 2.936×10!4 1.767×103

 0.126 4.042 4.577 2.397 2.936 1.296 
0.158 3.073 3.206 1.757 2.936 9.502×102 

0.200 2.374 2.252 1.275 2.936 6.991 
0.251 1.814 1.579 9.260×102 2.936 5.140 
0.316 1.360 1.104 6.764 2.936 3.764 
0.398 9.954×100 7.731×101 5.027 2.936 2.763 
0.501 7.179 5.371 3.705 2.936 2.188 
0.631 5.110 3.675 2.676 2.936 1.444 
0.794 3.591 2.481 1.897 2.936 1.022 
1.000 2.498 1.662 1.329 2.936 7.161×101 

1.259 1.719 1.106 9.191×101 2.935 4.958 
1.585 1.171 7.306×100 6.280 2.935 3.395 
1.995 7.758×10!1 4.751 4.171 2.934 2.281 
2.512 5.087 3.067 2.737 2.933 1.516 
3.162 3.340 1.977 1.793 2.932 1.002 
3.981 2.196 1.273 1.172 2.930 6.580×100 

5.012 1.446 8.183×10!1 7.655×100 2.926 4.295 
6.310 9.522×10!2 5.285 5.039 2.920 2.807 
7.943 6.282 3.402 3.302 2.911 1.819 

10.0 4.162 2.155 2.111 2.896 1.153 
15.0 2.038 9.283×10!2 9.041×10!1 2.847 4.893×10!1 

20.0 1.099 4.427 4.452 2.780 2.444 
25.0 6.166×10!3 2.390 2.734 2.697 1.472 
30.0 3.888 1.445 1.613 2.602 8.609×10!2 

35.0 2.680 9.063×10!3 1.109 2.497 5.931 
40.0 1.899 6.014 7.913×10!2 2.384 4.210 
45.0 1.372 4.144 5.858 2.268 3.067 
50.0 1.020 2.993 4.388 2.152 2.275 
55.0 7.683×10!4 2.253 3.288 2.040 1.699 
60.0 6.028 1.737 2.548 1.934 1.313 
65.0 4.883 1.369 2.041 1.839 1.046 
70.0 4.069 1.094 1.655 1.756 8.488×10!3 

75.0 3.457 8.782×10!4 1.345 1.690 6.976 
80.0 3.019 7.238 1.124 1.640 5.842 
85.0 2.681 6.036 9.637×10!3 1.610 4.953 
90.0 2.459 5.241 8.411 1.600 4.292 
95.0 2.315 4.703 7.396 1.610 3.782 

100.0 2.239 4.363 6.694 1.640 3.404 
105.0 2.225 4.189 6.220 1.690 3.116 
110.0 2.239 4.073 5.891 1.756 2.912 
115.0 2.265 3.994 5.729 1.839 2.797 
120.0 2.339 3.972 5.549 1.934 2.686 
125.0 2.505 3.984 5.343 2.040 2.571 
130.0 2.629 4.071 5.154 2.152 2.476 
135.0 2.662 4.219 4.967 2.268 2.377 
140.0 2.749 4.458 4.822 2.384 2.329 
145.0 2.896 4.775 4.635 2.497 2.313 
150.0 3.088 5.232 4.634 2.602 2.365 
155.0 3.304 5.824 4.900 2.697 2.506 
160.0 3.627 6.665 5.142 2.780 2.662 
165.0 4.073 7.823 5.359 2.847 2.835 
170.0 4.671 9.393 5.550 2.896 3.031 
175.0 4.845 9.847 5.618 2.926 3.092 
180.0 5.019 1.030×10!3 5.686 2.936 3.154 

a

b
 Data reproduced from Petzold (1972).
Computed from Eq. (3.28) and Table 3.8.

c Data reproduced from Mobley, et al. (1993). 
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logR, as determined from the two smallest measured scattering angles.  This 
average particle phase function is adequate for many radiative transfer 
calculations.  However, the user must remember that deviations from the 
average can be expected in nature (for example, in waters with abnormally 
high numbers of either large or small particles), although the details of such 
deviations have not been quantified. 

Table 3.11 compares several inherent optical properties for pure sea 
water and for the three Petzold water samples of Fig. 3.13 and Table 3.10. 
These data show how greatly different even clear ocean water is from pure sea 
water.  Note that natural water ranges from absorption dominated (To = 0.247) 
to scattering dominated (To = 0.833) at 8 = 514 nm. The ratio of 
backscattering to total scattering is typically a few percent in natural waters. 
However, there is no clear relation between bb/b and the water type, at least for 
the Petzold data of Table 3.10.  This lack of an obvious relation is likely the 
result of differing particle types in the three waters.  Since refraction and 
reflection are important processes at large scattering angles, the particle indices 
of refraction are important in determining bb. Total scattering is dominated by 
diffraction, and so particle composition has little effect on b values. The last 
column of Table 3.11 gives the angle R such that one half of the total 
scattering occurs at angles between 0 and R. This angle is rarely greater than 
10° in natural waters. 

Table 3.11.  Selected inherent optical properties for the waters 

presented in Fig. 3.13 and in Table 3.10. 


All values are for 8 = 514 nm, except as noted.


 Watera b c To bb/b R(½b) 
(m!1) (m!1) (m!1) (deg) 

pure sea water 0.0405a 0.0025b 0.043 0.058 0.500 90.00 
clear ocean 0.114c 0.037 0.151d 0.247 0.044 6.25 
coastal ocean 0.179c 0.219 0.398d 0.551 0.013 2.53 
turbid harbor 0.366c 1.824 2.190d 0.833 0.020 4.68 

a Value obtained by interpolation in Table 3.5. 
b Value obtained by interpolation in Table 3.8. 
c Estimated by Petzold (1972) from c(530) ! b(514). 
d Measured by Petzold (1972) at 8 = 530 nm. 
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It is interesting to compare the particle phase function characteristic of 
natural waters, p, with a few other phase functions found in nature.  Figure 
3.14 plots p as just defined (dotted line), along with phase functions for 
atmospheric haze (dashed line), human liver cells (plus signs), and cirrostratus 

p haze is almost three orders of 

p at R = 0.1°. However, haze

p. haze 

clouds (solid line).  Note especially that the atmospheric haze phase function 
is much less peaked than  at small angles:  
magnitude less than  shows more pronounced 
backscatter than does This more symmetrical (about 90°) behavior of 
reflects its origin in scattering by very small aerosols.  The liver phase 

:function, arising from cells larger than 7 m in size, appears to show strong 
forward scatter, although liver was not measured for R < 5°. The cirrus cloud 
phase function is most interesting.  It shows a strong forward peak, arising 
from diffraction by the large (10–100 :m) ice crystals forming the cloud.  The 
prominent peaks at R = 22° and 46° arise from light refraction through the 
hexagonal ice crystals.  These peaks are          

pFig. 3.14  Examples of phase functions.  The dotted line is from Fig. 
3.13(b); the dashed line is atmospheric haze ["haze L" at 8 = 550 nm, 
computed by Mie theory using size distribution parameters from Deirmendjian 
(1969)]; the + signs are human liver tissue [at 8 = 635 nm, redrawn from 
Marchesini, et al. (1989), by permission]; and the solid line is for a cirrostratus 
cloud [at 8 = 550 nm, drawn from data tabulated in Takano and Liou (1989)]. 
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responsible for the halos sometimes seen around the sun or moon when there 
is a thin cirrus overcast.  Greenler (1980) gives an excellent explanation of 
how photon paths passing through ice crystals give rise to the peaks at 22° and 
46°. 

We thus see that the p typical of natural waters lies somewhere in the 
mid-range of complexity of phase functions.  That is, p is more highly peaked 
than say, haze, but much less complicated in its R dependence than a phase 
function arising from scattering by ice crystals.  It should be noted that the 
hexagonal symmetry of the ice crystals leads to a complicated phase function 
even though the ice crystals are randomly oriented within the cloud. 

Analytic approximations of phase functions 

It is often convenient to have a simple analytic formula that 
approximates the shape of an actual phase function.  The formula most 
commonly used for this purpose is the Henyey-Greenstein (1941) phase 
function 

(3.34) 

Here g is a parameter that can be adjusted to control the relative amounts of 
forward and backward scattering in HG. Note that satisfies theHG

normalization condition (3.8) for any g. 
The physical interpretation of g comes from noting that 

(3.35) 

Thus the Henyey-Greenstein parameter g is just the average of the cosine of 
the scattering angle for HG. Recall that this asymmetry parameter g was 
defined for any phase function in Eq. (3.8b). 

The average of cosR for the particle phase function of Fig. 3.13 andp

Using gTable 3.10 is 0.924.   = 0.924 in Eq. (3.34) thus gives the "best-fit" 
Henyey-Greenstein phase function to the particle phase function p, in the

Figure 3.15sense that each phase function then has the same average cosine.  
compares HG(0.924;R) and p; HG is also shown for g = 0.7 and 0.99.  Note 
that the best-fit HG differs noticeably from p at scattering angles greater than 
150° and less than 20°, and that HG is much too small at angles of less than 
a few degrees. The small-angle behavior of Eq. (3.34) is inherently 
incompatible with because HG levels off for small R,p
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p from Fig. 3.13(b)Fig. 3.15  Comparison of the particle phase function 
(solid line) with HG of Eq. (3.34) for three values of g (dashed lines). 

whereas  continues to rise.  Even for g = 0.99, HG is nearly constant for Rp

< 0.5°. 
It is also possible to choose the Henyey-Greenstein g-parameter so as 

to minimize the mean square difference 

between a given $ and $HG. Kamiuto (1987) shows how to determine the g 
value that gives a least-squares best fit to a given phase function. 

A linear combination of Henyey-Greenstein phase functions is often 
used to improve the fit at small and large angles.  The so-called two-term 
Henyey-Greenstein (TTHG) phase function is 

(3.36) 

Enhanced small-angle scattering is obtained by choosing g1 near one, and 
enhanced backscatter is obtained by making g2 negative; " is a weighting 
factor between zero and one.  Kattawar (1975) shows how to determine best-fit 
values of ", g1, and g2 for a given phase function. Excellent fits can 
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be obtained with the TTHG for phase functions that are not highly peaked, for 
example the one for atmospheric haze shown in Fig. 3.14 (see Kattawar's paper 
for example fits).  However, the fit of TTHG to the highly peaked remainsp

unsatisfactory at small angles, for the reason already noted. 
Another analytic phase function sometimes seen in the literature is that 

of Beardsley and Zaneveld (1969).  It has the unnormalized form 

Here ,f and ,b are parameters to be used in fitting BZ to the given phase 
function.  This formula also has a zero slope as R 6 0, and is therefore 
incapable of reproducing  at small R. In fact, BZ does a poor job of fitting p

p at scattering angles of less than several tens of degrees. 
A final analytic formula worthy of mention is that of Wells (1973), 

which has the unnormalized form 

(3.37) 

Here Ro is the parameter to be used in fitting W; Ro = 0.03 rad is often used 
for natural waters.  Equation (3.37) is essentially the same as Eq. (3.34) for 
small R. This can be seen by approximating the cosR term in Eq. (3.34) as 
cosR . 1 ! ½R2, as is valid for small R, and comparing the result with Eq. 
(3.37). Equating the coefficients of the R2 terms reveals the connection 

between the parameters of and W; thus Ro = 0.03 in Eq. (3.37)HG

corresponds to g = 0.97 in Eq. (3.34). Although Eq. (3.34) gives an overall 
better fit to any phase function than does Eq. (3.37),  the Wells form is often 
used in studies where only small-angle (R < 20°) scattering is of interest.  The 
reason is that certain integral transforms of the phase function can be computed 
analytically for W, but not for HG. Such calculations are seen in the Wells 
(1973) paper. 
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Wavelength dependence of scattering; bio-optical models 

The strong 8!4.32 wavelength dependence seen in Eq. (3.28) for pure-
water scattering is not seen in natural waters.  This is because scattering is 
dominated by diffraction from polydisperse particles that are usually much 
larger than the wavelength of visible light.  Although diffraction depends on 
the particle size-to-wavelength ratio, the presence of particles of many sizes 
diminishes the wavelength effects that are seen in diffraction by a single 
particle.  Moreover, diffraction does not depend on particle composition. 
However, some wavelength dependence is to be expected, especially at 
backward scattering angles where refraction, and hence particle composition, 
is important.  Molecular scattering also contributes something to the total 
scattering, and can even dominate the particle contribution at backscatter 
angles in clear water (Morel and Gentili, 1991). 

Morel (1973) presents several useful observations on the wavelength 
dependence of scattering. Figure 3.16 shows two sets of volume scattering 

Fig. 3.16  Wavelength dependence of total volume scattering functions 
measured in very clear (Tyrrhenian Sea) and in turbid (English Channel) 
waters. [redrawn from Morel (1973)] 
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functions, one from the very clear waters of the Tyrrhenian Sea and one from 
the turbid English Channel.  Each set displays $(R;8)/$(90°;8) for 8 = 366, 
436, and 546 nm.  The clear water shows a definite dependence of the shape 
of $(R;8) on 8, whereas the particle-rich turbid water shows much less 
wavelength dependence.  In each case, the volume scattering function of 
shortest wavelength is most nearly symmetric about R = 90°, presumably 
because symmetric molecular scattering is contributing relatively more to the 
total scattering at short wavelengths. 

Figure 3.17 shows a systematic wavelength dependence of particle 
volume scattering functions.  Figure 3.17(a) shows average values of 
$ (R;366)/$ (R;546) for N samples, as labeled in the figure.  The vertical bars p p

are one standard deviation of the observations.  Figure 3.17(b) shows the ratio 
for 8 = 436 to 546 nm.  These ratios clearly depend both on wavelength and 
scattering angle.  Assuming that $ (R;8) has a wavelength dependence ofp

the data of Fig. 3.17 imply values for n as seen in Table 3.12.  As 

Fig. 3.17.  Wavelength dependence of particle volume scattering functions. N 
is the number of samples.  [redrawn from Morel (1973)] 
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anticipated, the wavelength dependence is strongest for backscatter (R = 150°) 
and weakest for forward scatter (R = 30°). 

Kopelevich (1983) and Kopelevich and Mezhericher (1983) have 
statistically derived a two-parameter model for spectral volume scattering 
functions (VSF's).  This model separates the contributions by "small" and 
"large" particles to the particulate scattering.  Small particles are taken to be 
mineral particles less than 1 :m in size and having an index of refraction 
(relative to water) of n = 1.15; large particles are biological particles larger 
than 1 :m in size and having an index of refraction of n = 1.03. The model is 
defined by 

(3.38) 

with the following definitions: 

$w(R;8)	 the  VSF of pure sea water, given by Eq. (3.28) with 8o = 
550 nm and an exponent of 4.30, 

vs the volume concentration of small particles, with units of 
cm3 of particles per m3 of water, i.e. parts per million 
(ppm), 

$

$
vR the analogous volume concentration of large particles, 

s
*(R) the small-particle VSF per unit volume concentration of 

small particles, with units of m!1 sr!1 ppm!1, 

R 
*(R) the analogous large-particle concentration-specific VSF. 
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The concentration-specific VSF's for small and large particles are given in 
Table 3.13.  Equation (3.35) can be evaluated as is if the two parameters vs and 
vR are known; the ranges of values for oceanic waters are 0.01 # vs # 0.20 ppm 
and 0.01 # vR # 0.40 ppm. However, these two parameters are themselves 
parameterized in terms of the total volume scattering function measured at 8 
= 550 nm for R = 1° and 45°: 

(3.39) 

Thus $(R;8) can also be determined from two measurements of the total VSF. 

$

The mathematical form of the Kopelevich model reveals its underlying 
physics.  Large particles give diffractive scattering at very small angles, thus 

R 
*(R) is highly peaked for small R and the wavelength dependence of the large 

particle term is weak (8!0.3). Small particles contribute more to scattering at 
large angles and thus have a more symmetric VSF and a stronger wavelength 

8!1.7).dependence (

Table 3.13. The concentration-specific volume scattering functions for 
*small ($ ) and large ($R 

*) particles, for use in Eq. (3.38).a 
s 

$ * $R 
* $ * $R 

*R Rs s 

0 5.3 140 
0.5 5.3 98 

1 5.2 46 
1.5 5.2 26 

2 5.1 15 
4 4.6 3.6 
6 3.9 1.1 

10 2.5 0.20 
15 1.3 5.0×10!2 

30 0.29 2.8×10!3 

9.8×10!2 6.2×10!4 

4.1 3.8 
2.0 2.0 
1.2 6.3×10!5 

8.6×10!3 4.4 
7.4 2.9 
7.4 2.0 
7.5 2.0 
8.1 7.0 
1.34 m!1/ppm 0.312 m!1/ppm 

(deg) (deg) 

45 
60 
75 
90 

105 
120 
135 
150 
180 
b* =

a Reproduced from Kopelevich (1983). 
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A qualitative comparison of Eq. (3.38) with the Petzold measurements 
of Fig. 3.13 is worthwhile.  If we arbitrarily choose mid-range values of vs = 
0.1 ppm and vR = 0.2 ppm, then the total scattering associated with Eq. (3.38) 
at the Petzold wavelength of 8 = 514 nm is b = 0.216 m-1 [from Eq. (3.42), 
below].  This is nearly equal to the total scattering for the Petzold coastal water 
case, b = 0.219 m-1 (from Table 3.11).  Figure 3.18 shows the individual 
contributions of pure sea water, small particles, and large particles to $(R;514) 
as predicted by Eq. (3.38), along with the Petzold coastal water $(R;514) of 
Table 3.11.  We see that the model of Eq. (3.38) underpredicts $ at small 
scattering angles and overpredicts $ at large angles, when compared to the 
Petzold measurements. 

Figure 3.19 shows the predictions of Eq. (3.38) for very clear water (vs 

= vR = 0.01 ppm) and for very turbid water (vs = 20 ppm and vR = 40 ppm), for 
the wavelengths seen in the Morel data of Fig. 3.16. Comparison of these two 
figures shows that the Kopelevich model for $(R;8) qualitatively reproduces 
the wavelength behavior observed in the clear (Tyrrhenian Sea) and turbid 
(English Channel) waters of Fig. 3.16.  Shifrin (1988, his Fig. 5.20) also claims 
that Eq. (3.38) gives a reasonably good 

Fig. 3.18.  Comparison of the Kopelevich model for the volume scattering 
function, Eq. (3.38), with a volume scattering function as measured by Petzold 
(Table 3.10).  The pure-sea-water, small- particle, and large-particle 
components of Eq. (3.38) are shown. 
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Fig. 3.19.  Wavelength dependence of the Kopelevich model, Eq. (3.38), for 
very clear and very turbid waters. Compare to Fig. 3.16. 

description of VSF's observed in a variety of waters.  Unfortunately, the data 
upon which the model (3.38) is based have never been published. 

Several simple models are available for the total scattering coefficient 
b(8).  A commonly employed bio-optical model for b(8) is that of Gordon and 
Morel (1983): 

(3.40) 

Here 8 is in nm, and C is the chlorophyll concentration in mg m!3. This model 
includes the contribution of pure water to the total scattering; this contribution 
is negligible except at very low chlorophyll values.  Morel (1991b) adds a 
pure-water term, bw(8), to the right-hand side of Eq. (3.40), so that the model 
gives the correct value at C = 0. We shall use this model in Section 11.8. 

A related bio-optical model for the total backscatter coefficient bb(8) 
is found in Morel (1988; see also Stramski and Kiefer, 1991): 

(3.41) 
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This model explicitly shows the contributions by pure water and by particles. 
The first factor in brackets in the second term on the right-hand side of the 
equation represents the probability of backscatter by a particle; the second 
factor in brackets is the total scattering by particles.  The (½ ! ¼logC) factor 
gives the particle contribution a 8!1 wavelength dependence in very clear (C 
= 0.01 mg m!1) water and no wavelength dependence in very turbid (C = 100 
mg m!3) water. The empirically derived models (3.40) and (3.41) are intended 
for use only in case 1 waters. 

A feeling for the accuracy of the b(8) model of Eq. (3.40) can be 
obtained from Fig. 3.20, which plots measured b(550) values versus 
chlorophyll concentration C in both case 1 and case 2 waters.  Note that even 
when the model is applied to the case 1 waters from which it was derived, the 
predicted b(550) value easily can be wrong by a factor of two.  If the model is 
misapplied to case 2 waters, the error can be an order of magnitude.  Note that 
for a given C value, b(550) is higher in case 2 waters 

Fig. 3.20.  Measured scattering coefficients at 8 = 550 nm, b(550), as a 
function of chlorophyll concentration C. Case 1 waters lie between the dashed 
lines.  Case 2 waters lie above the upper dashed line, which is defined by 
b(550) = 0.45C0.62. The solid line is the model of Eq. (3.40). [redrawn from 
Gordon and Morel (1983), by permission] 
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than in case 1 waters, presumably because of the presence of additional 
particles that do not contain chlorophyll. 

Integration over R of the Kopelevich $(R;8) model of Eq. (3.38) yields 
another model for b(8): 

(3.42) 

where vs and vR are given by Eq. (3.39).  Kopelevich claims that the accuracy 
of this model is -30%. 

An extension of the Kopelevich model is found in Haltrin and Kattawar 
(1991, their notation): 

(3.43) 

Here bw(8) is given by 

(3.44) 

which is essentially the same as Eq. (3.31) and the data in Table 3.8.  The 
o oterms b (8) and bpR (8) are the specific scattering coefficients for small and ps 

large particles, respectively, and are given by 

Ps and PR are the concentrations in g m!3 of small and large particles, 
respectively.  These quantities are parameterized in terms of the chlorophyll 
concentration C, as shown in Table 3.14.  This work also presents a model for 
backscattering: 

(3.45) 

Here Bs = 0.039 is the backscattering probability for small particles and BR = 
0.00064 is the backscattering probability for large particles. 

The bio-optical models for scattering just discussed are useful but very 
approximate.  The reason for the frequent large discrepancies between model 
predictions and measured reality likely lies in the fact that scattering depends 
not just on particle concentration (as parameterized in  terms of 
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chlorophyll concentration), but also on the particle index of refraction and on 
the details of the particle size distribution, which are not well parameterized 
in terms of the chlorophyll concentration alone.  Whether or not the 
Kopelevich model or its derivative Haltrin-Kattawar form, which at least 
partition the scattering into large and small particle components, is in some 
sense better than the Gordon-Morel model is not known at present.  Another 
consequence of the complexity of scattering is seen in the next section. 

3.9 Beam Attenuation

The spectral beam attenuation coefficient c(8) is just the sum of the 
spectral absorption and scattering coefficients:  c(8) = a(8) + b(8). Since both 
a(8) and b(8) are highly variable functions of the nature and concentration of 
the constituents of natural waters, so is c(8). Beam attenuation near 8 = 660 
nm is the only inherent optical property of water 
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that is easily, accurately and routinely measured.  This wavelength is used both 
for engineering reasons (the availability of a stable LED light source) and 
because absorption by yellow matter is negligible in the red.  Thus the quantity 

(3.46) 

is determined by the nature of the suspended particulate matter.  The 
particulate beam attenuation cp(660) is highly correlated with total particle 
volume concentration (usually expressed in parts per million, ppm), but it is 
much less well correlated with chlorophyll concentration (Kitchen, et al., 
1982).  The particulate beam attenuation can be used to estimate the total 
particulate load [often expressed as g m!3; see Bishop (1986)].  However, the 
dependence of the particulate beam attenuation on particle properties is not 
simple.  Spinrad (1986) used Mie theory to calculate the dependence of the 
volume-specific particulate beam attenuation (particulate beam attenuation 
coefficient c  in m!1, per unit of suspended particulate volume in ppm) on the p

relative refractive index and on the slope s of an assumed Junge size 
distribution, for particles in the size range 1-80 :m. (See Section 3.11 for a 
description of how such calculations are made.)  Figure 3.21 shows the results. 
Although the details of the figure are sensitive to the 

Fig. 3.21.  Computed relationship between the volume-specific particle beam 
attenuation coefficient, relative index of refraction, and slope s of a Junge 
number size distribution. [reproduced from Spinrad (1986), by permission] 



3.8 Scattering 127 

choice of upper and lower size limits in the Mie calculations [see Eq. (3.53)], 
the qualitative behavior of the curves is generally valid and supports the 
statements made in the closing paragraph of the previous section. 

Because of the complicated dependence of scattering, and hence of 
beam attenuation, on particle properties, the construction of bio-optical models 
for c(8) is not easy.  The reason, as just seen, is that chlorophyll concentration 
alone is not sufficient to parameterize scattering (Kitchen and Zaneveld, 
1990a).  Figure 3.22 illustrates this insufficiency.  The figure plots vertical 
profiles of c(665), water density (proportional to the oceanographic variable 
Ft), and chlorophyll concentration (proportional to fluorescence by chlorophyll 
and related pigments).  Note that the maximum in beam attenuation at 46 m 
depth coincides with the interface (pycnocline) between 

Fig. 3.22.  Example from Pacific Ocean water of the depth dependence of 
beam attenuation (solid line), water density (Ft, dashed line), and chlorophyll 
concentration (fluorescence, dotted line).  [reproduced from Kitchen and 
Zaneveld (1990a), by permission] 
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less dense water above and more dense water below.  Peaks in beam 
attenuation are commonly observed at density interfaces, because particle 
concentrations are often greatest there.  The maximum in chlorophyll 
concentration occurs at a depth of 87 m. The chlorophyll concentration 
depends not just on the number or volume of chlorophyll bearing particles, but 
also on their photoadaptive state, which depends on nutrient availability and 
ambient lighting.  Thus chlorophyll concentration cannot be expected to 
correlate well with total scattering or with particulate beam attenuation c (8).p

Voss (1992) has developed an empirical model for c(8) given a 
measurement of c at 8 = 490 nm: 

(3.47) 

where 8 is in nm and c is in m!1. The attenuation coefficient for pure sea 
water, cw = aw + bw,is given by the Smith-Baker data of Table 3.5.  This model 
was statistically derived from data of global extent.  Testing of the model with 
independent data usually gave errors of less than 5%, although occasional 
errors of -20% were found. 

Voss also determined a least-squares fit of c(490) to the chlorophyll 
concentration.  The result, 

(3.48) 

is similar in form to the chlorophyll dependence of the a(8) and b(8) models 
seen in Eqs. (3.27) and (3.40), respectively.  Figure 3.23 shows the spread of 
the data points used to determine Eq. (3.48).  Note that for a given value of C, 
there is an order-of-magnitude spread in values of c(490). The user of Eq. 
(3.48), or of the models for b(8), must always keep in mind that large 
deviations from the predicted values will be found in natural waters. 

3.10 Diffuse Attenuation and Jerlov Water Types

As we saw in Section 3.2,  there is a so-called diffuse attenuation 
coefficient for any radiometric variable.  The most commonly used diffuse 
attenuation coefficients are those for downwelling plane irradiance, Kd(z;8), 
and for PAR, KPAR(z). Although the various diffuse attenuation coefficients are 
conceptually distinct, in practice they are often numerically similar, and they 
all asymptotically approach a common value at great depths in homogeneous 
water. The monograph by Tyler and Smith (1970) gives 
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Fig. 3.23.  Particle beam attenuation at 490 nm (open circles) as a function of 
chlorophyll concentration C, as used to determine Eq. (3.47), which is given 
by the solid line.  Triangles give values as predicted by the sum of Eqs. (3.27) 
and (3.40). [redrawn from Voss (1992), by permission] 

tabulations and plots of Ed(z;8), Eu(z;8), and the associated Kd(z;8), Ku(z;8), 
and R(z;8) measured in a variety of waters. 

Observation shows that Kd(z;8) varies systematically with wavelength 
over a wide range of waters from very clear to very turbid.  Moreover, Kd(z;8) 
is often rather insensitive to environmental effects (Baker and Smith, 1979) 
except for extreme conditions (such as the sun near the horizon), and in most 
cases correction can be made for the environmental effects that are present in 
Kd (Gordon, 1989a, as discussed in Section 3.2).  Kd therefore is regarded as 
a quasi-inherent optical property whose variability is governed primarily by 
changes in the inherent optical properties of the water body and not by changes 
in the external environment. 

Jerlov (1976) exploited this benign behavior of Kd to develop a 
frequently used classification scheme for oceanic waters based on the spectral 
shape of Kd. The Jerlov water types are in essence a classification based on 
water clarity as quantified by Kd(w;8), where z = w is a depth just below the 
sea surface.  This classification scheme can be contrasted with the case 1 and 
case 2 classification described in Section 3.7, which is based on the nature of 
the suspended matter within the water.  The Jerlov water types 
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are numbered I, IA, IB, II and III for open ocean waters, and 1 through 9 for 
coastal waters.  Type I is the clearest and type III is the most turbid open ocean 
water.  Likewise, for coastal waters, type 1 is clearest and type 9 is most turbid. 
The Jerlov types I-III generally correspond to case 1 water, since 
phytoplankton predominate in the open ocean.  Types 1-9 correspond to case 
2 waters, where yellow matter and terrigenous particles dominate the optical 
properties.  A rough correspondence between chlorophyll concentration and 
Jerlov oceanic water type is given by Morel (1988): 

C: 0-0.01 - 0.05 - 0.1 - 0.5 - 1.5-2.0 mg m!3

 water type: I  IA IB II III 

Table 3.15.  Downwelling irradiance diffuse attenuation coefficients Kd(8) 
used to define the Jerlov water types, as determined by Austin and Petzold.a 

All quantities in the body of the table have units of m!1.

 Jerlov water type 
8 

(nm) I IA IB II III 1 

350 0.0510 0.0632 0.0782 0.1325 0.2335 0.3345 
375 0.0302 0.0412 0.0546 0.1031 0.1935 0.2839 
400 0.0217 0.0316 0.0438 0.0878 0.1697 0.2516 
425 0.0185 0.0280 0.0395 0.0814 0.1594 0.2374 
450 0.0176 0.0257 0.0355 0.0714 0.1381 0.2048 
475 0.0184 0.0250 0.0330 0.0620 0.1160 0.1700 
500 0.0280 0.0332 0.0396 0.0627 0.1056 0.1486 
525 0.0504 0.0545 0.0596 0.0779 0.1120 0.1461 
550 0.0640 0.0674 0.0715 0.0863 0.1139 0.1415 
575 0.0931 0.0960 0.0995 0.1122 0.1359 0.1596 
600 0.2408 0.2437 0.2471 0.2595 0.2826 0.3057 
625 0.3174 0.3206 0.3245 0.3389 0.3655 0.3922 
650 0.3559 0.3601 0.3652 0.3837 0.4181 0.4525 
675 0.4372 0.4410 0.4457 0.4626 0.4942 0.5257 
700 0.6513 0.6530 0.6550 0.6623 0.6760 0.6896 

a Reproduced from Austin and Petzold (1986), with permission. 
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Austin and Petzold (1986) re-evaluated the Jerlov classification using 
an expanded data base and slightly revised the Kd(8) values used by Jerlov in 
his original definition of the water types.  Table 3.15 gives the revised values 
for Kd(8) for the water types commonly encountered in oceanography.  These 
values are recommended over those found in Jerlov (1976). Figure 3.24 shows 
the percent transmittance of Ed(8) per meter of water for selected Jerlov water 
types.  Note how the wavelength of maximum transmittance shifts from blue 
in the clearest open ocean water (type I) to green (types III and 1) to yellow in 
the most turbid,  yellow-matter-rich coastal water (type 9).  Figure 3.25 shows 
the color of the various Jerlov water types as a function of depth within the 
water body.  The color was computed by using Ed(8) in Eqs. (2.10) and (2.11). 
Note that the open-ocean types I-III are blue, coastal waters of types 1-5 are 
green, and the very turbid type 9 is distinctly yellow. For each water type, the 
color is a very impure mixture near the surface.  As one descends into the 
water body, only the wavelengths of minimum absorption are left, and the 
color becomes purer. 

Austin and Petzold also presented a simple model that allows the 
determination of Kd(8) at all wavelengths from a value of Kd measured at any 
single wavelength. This model is defined by 

(3.49) 

Fig. 3.24.  Percentage transmittance of downwelling irradiance Ed, per meter 
of water, as a function of wavelength, for selected Jerlov water types. 
[reproduced from Jerlov (1976), by permission] 
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Fig. 3.25.  Water color computed from Ed(8), as a function of the Jerlov water 
type and depth within the water body, displayed on a C.I.E. chromaticity 
diagram.  The dashed curves are lines of constant depth, in meters, and the 
solid curves emanating from the white light point W give the colors for their 
respective Jerlov water types. [redrawn from Jerlov (1976), by permission] 

Here 8o is the wavelength at which Kd is measured, and Kdw refers to values for 
pure sea water. Kdw(8) and the statistically derived coefficients M(8) are given 
in Table 3.16.  (These Kdw values differ slightly from those seen in Table 3.5.) 
This model is valid in waters where Kd(490) # 0.16 m!1, which corresponds to 
a chlorophyll concentration of C # 3 mg m!3. 

Unlike the beam attenuation coefficient c(8), the diffuse attenuation 
Kd(z;8) is highly correlated with chlorophyll concentration.  The reason is seen 
in the approximate formula (Gordon, 1989a) 
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Table 3.16.  Values of the coefficient M(8) and of the downwelling diffuse 
attenuation coefficient for pure sea water, Kdw(8), for use in Eq. (3.49).a 

8 M Kdw 8 M Kdw 8 M Kdw 

(nm) (m!1) (m!1) (nm) (m!1) (m!1) (nm) (m!1) (m!1) 

350 2.1442 0.0510 470 1.1982 0.0179 590 0.4840 0.1578 
360 2.0504 0.0405 480 1.0955 0.0193 600 0.4903 0.2409 
370 1.9610 0.0331 490 1.0000 0.0224 610 0.5090 0.2892 
380 1.8772 0.0278 500 0.9118 0.0280 620 0.5380 0.3124 
390 1.8009 0.0242 510 0.8310 0.0369 630 0.6231 0.3296 
400 1.7383 0.0217 520 0.7578 0.0498 640 0.7001 0.3290 
410 1.7591 0.0200 530 0.6924 0.0526 540 0.7300 0.3559 
420 1.6974 0.0189 540 0.6350 0.0577 660 0.7301 0.4105 
430 1.6108 0.0182 550 0.5860 0.0640 670 0.7008 0.4278 
440 1.5169 0.0178 560 0.5457 0.0723 680 0.6245 0.4521 
450 1.4158 0.0176 570 0.5146 0.0842 690 0.4901 0.5116 
460 1.3077 0.0176 580 0.4935 0.1065 700 0.2891 0.6514 

a Condensed with permission from Austin and Petzold (1986), who give values 
every 5 nm. 

where 2sw is the solar angle measured within the water.  Since a(8) >> bb(8) 
for most waters, Kd(8) is largely determined by the absorption properties of the 
water, which are fairly well parameterized by the chlorophyll concentration. 
Beam attenuation on the other hand is proportional to the total scattering 
which, as seen above, is not well parameterized by chlorophyll concentration. 
Observations show that the beam attenuation at 660 nm is not in general 
correlated with diffuse attenuation (Siegel and Dickey, 1987). 

A bio-optical model for Kd(8) is given by Morel (1988): 

(3.50) 

Here Kdw(8) is the diffuse attenuation for pure sea water, and P(8) and e(8) are 
statistically derived functions that convert the chlorophyll concentration C in 
mg m!3 into Kd values in m!1. Table 3.17 gives the Kdw, P and e values used in 
the Morel model.  This model is applicable to case 1 waters with 
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Table 3.17.  Values of the coefficients P(8) and e(8), and of the 
downwelling diffuse attenuation coefficient for pure sea water, Kdw(8), for 

use in Eq. (3.50).a 

8 
(nm) 

P(8) e(8) Kdw(8) 
(m!1) 

8 
(nm) 

P(8) e(8) Kdw(8) 
(m!1) 

400 0.1100 0.668 0.0209 550 0.0410 0.650 0.0640 
410 0.1125 0.680 0.0196 560 0.0390 0.640 0.0717 
420 0.1126 0.693 0.0183 570 0.0360 0.623 0.0807 
430 0.1078 0.707 0.0171 580 0.0330 0.610 0.1070 
440 0.1041 0.707 0.0168 590 0.0325 0.618 0.1570 
450 0.0971 0.701 0.0168 600 0.0340 0.626 0.2530 
460 0.0896 0.700 0.0173 610 0.0360 0.634 0.2960 
470 0.0823 0.703 0.0175 620 0.0385 0.642 0.3100 
480 0.0746 0.703 0.0194 630 0.0420 0.653 0.3200 
490 0.0690 0.702 0.0217 640 0.0440 0.663 0.3300 
500 0.0636 0.700 0.0271 650 0.0450 0.672 0.3500 
510 0.0578 0.690 0.0384 660 0.0475 0.682 0.4050 
520 0.0498 0.680 0.0490 670 0.0515 0.695 0.4300 
530 0.0467 0.670 0.0518 680 0.0505 0.693 0.4500 
540 0.0440 0.660 0.0568 690 0.0390 0.640 0.5000 

700 0.0300 0.600 0.6500 

a Condensed with permission from Morel (1988), who gives values every 5 nm. 

C # 30 mg m!3, although the P and e values are somewhat uncertain for 8 > 
650 nm because of sparse data available for their determination.  Some feeling 
for the accuracy of the Morel Kd(8) model can be obtained from Fig. 3.26, 
which shows predicted (the line) and observed Kd(450) values as a function of 
C.  Errors can be as large as a factor of two in case 1 waters (dots), and can be 
much larger if the model is misapplied to case 2 waters (open circles).  The 
Morel model (3.50) allows the determination of Kd(8) if C is measured; the 
Austin and Petzold model (3.49) determines Kd(8) from a measurement at one 
wavelength. 

Morel (1988) also presents a very simple bio-optical model for 
(0;zeu), the value of KPAR(z) averaged over the euphotic zone 0 # z # zeu: 

(3.51) 
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Fig. 3.26.  Measured Kd values at 450 nm as a function of chlorphhyll 
concentration C. Dots are measurements from case 1 waters; open circles are 
from case 2 waters.  The solid line gives Kd(450) as predicted by the Morel 
bio-optical model, Eq. (3.50). [redrawn from Morel (1988), by permission] 

where C is chlorophyll concentration in mg m!3 and is in m!1. The 
euphotic zone is the region where there is sufficient light for photosynthesis to 
take place; it extends roughly to the depth where EPAR(z) is one percent of its 
surface value, i.e. EPAR(zeu) = 0.01 EPAR(0). Table 3.18 gives zeu as a function 
of C, as determined by the Morel model, Eq. (3.51). 

3.11 Single-particle Optics

In the preceding sections of this chapter, we have discussed the optical 
properties of large volumes of water.  We have only commented that these bulk 
properties are determined by the combined effects of the myriad particles 
found within the water.  We now briefly outline how the connection is made 
between many individual particles, each with its own optical properties, and 
the bulk properties as measured by oceanographic instruments and as used in 
radiative transfer theory. 
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Mie theory 

Let us consider the following problem.  We have given a single, 
homogeneous sphere of diameter D, whose material has a complex index of 
refraction ms = ns ! iks. The sphere is imbedded in an infinite, uniform, non-
absorbing medium whose index of refraction is therefore real: mm = nm. The 
sphere is illuminated by a collimated beam of monochromatic light of 
wavelength 8m = 8vac/nm, where 8vac is the wavelength in vacuo of light 
corresponding to the given frequency.  The beam is much larger in diameter 
than the sphere.  We wish to find how the incident light is absorbed and 
scattered by the sphere, including the angular distribution of the scattered 
intensity and the state of polarization of the scattered light.  The so-called Mie 
theory give a rigorous solution to this problem. 

The stated problem is most easily attacked using the electromagnetic-
field viewpoint of light.  The collimated light beam is described as an 
electromagnetic plane wave, and the sphere is treated as a dielectric. 
Maxwell's equations are then solved subject to boundary conditions at the 
surface of the sphere.  The solution of Maxwell's equations gives the 
electromagnetic field – in other words, the light field – both within the sphere 
and throughout the surrounding medium. 
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The solution of this geometrically simple problem is surprisingly 
difficult.  Indeed, this is one of the classic problems of applied mathematics, 
and its solution was attempted (and achieved in various forms) by many of the 
most illustrious figures of nineteenth-century physics.  For historical reasons, 
which can be found in Logan (1990), Mie (1908) commonly gets credit for the 
solution of the problem.  His general solution is exact and valid for all sizes of 
spheres, indices of refraction, and wavelengths. The solution is in the form of 
infinite series of complicated mathematical functions, and we shall not present 
the equations here.  Details of the solution are given in the texts by van de 
Hulst (1957) and by Bohren and Huffman (1983); the latter book includes 
computer programs for numerical evaluation of the various formulas. 

Calculations based on Mie theory are playing an increasingly important 
role in hydrologic optics, primarily because modern computers make it 
convenient to perform the necessary computations.  We should therefore at 
least acquaint ourselves with the terminology, even if we skip the mathematics. 
Moreover, a brief discussion of Mie theory and of "single-particle" optics 
serves to tie together several topics discussed earlier in this chapter. 

Mie's solution often is presented in terms of various absorption and 
scattering efficiencies. The absorption efficiency Qa, for example, gives the 
fraction of radiant energy incident on the sphere that is absorbed by the sphere. 
By "energy incident on the sphere," we mean the energy passing through an 
area equal to the cross-sectional (projected, or "shadow") area of the sphere, 
As = BD2/4. Likewise, the total scattering efficiency Qb gives the fraction of 
incident energy that is scattered into all directions. Other efficiencies can be 
defined: Qc = Qa + Qb for total attenuation, Qbb for backscattering, and so on. 

The Mie solution also can be presented in terms of absorption and 
scattering cross sections. The physical interpretation of these cross sections 
is simple.  The absorption cross section Fa, for example, is the cross sectional 
area of the incident beam that has power equal to the power absorbed by the 
sphere. The absorption and scattering cross sections are  therefore related to 
the corresponding efficiencies by the geometrical cross section of the sphere. 
Thus 

Likewise, Fb = QbAs, and so on for Fc, Fbb, etc. 
These efficiencies and cross sections depend on the various parameters 

of the problem as follows. The relevant parameter describing the 
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material of the sphere and of the surrounding medium is the relative complex 
index of refraction, mr, defined by [see Supplementary Note 2] 

n
Note that nr can be less than one:  a spherical air bubble in water would have 

r . 1/1.34 . 0.75. The relevant parameter describing the size of the sphere is 
its diameter D relative to the wavelength of the incident light within the 
medium.  The size parameter usually is written as 

Some of the Mie formulas also involve the phase-shift parameter 

and the absorption thickness 

It is important to note, when computing DN, that as is the absorption coefficient 
of the material forming the sphere.  Phytoplankton cells typically have as 

values of 104–105 m!1 at visible wavelengths.  This as must not be confused 
with the bulk absorption coefficient for natural waters containing 
phytoplankton – the quantity seen, for example, in Eq. (3.27).  As an example 
of the Mie parameter values, consider a phytoplankton cell with D = 8 :m, ns 

= 1.4, and as = 4×105 m!1. If the cell is floating in water with nm = 1.34, and 
if the incident light has 8vac = 500 nm, we then have " = 67.4, D = 6.0, and DN 
= 3.2. 

Computing bulk IOP's 

The various single-particle cross sections obtained from Mie theory are 
the cornerstones upon which we construct the equations that give us the bulk 
inherent optical properties. These equations are not complicated. 

Consider, for example, the computation of the total scattering 
coefficient b(8) from the single-particle cross section Fb(D;mr;8). The 
arguments of Fb remind us that the cross section depends on the particle's size 
and relative index of refraction, and on the wavelength of the incident light. 
We could equally well write Fb(";D;DN). 



139 3.11 Single-particle Optics 

We next observe that for even the most numerous oceanic particles, e.g. 
viruses or colloids at a concentration of 1015 m!3, the average distance between 
particles is greater than ten wavelengths of visible light.  For the optically most 
significant phytoplankton, the average separation is thousands of wavelengths. 
Moreover, these particles usually are randomly distributed and oriented. 
Ocean water therefore can be treated as a very dilute suspension of random 
scatterers, and consequently the intensity of light scattered by an ensemble of 
particles is given by the sum of the intensities due to the individual particles. 
Coherent scattering effects are negligible, except at extremely small scattering 
angles (Shifrin, 1988; Fry, et al., 1992b). 

Because of this optical independence of the individual particles, we can 
simply "sum up" their individual contributions to scattering: 

(3.52) 

Here n(D) is the particle number size distribution discussed in Section 3.4. 
Recall that n(D)dD is the number of particles per unit volume with diameters 
between D and D + dD. Examples of n(D) were seen in Eqs. (3.23) and (3.24). 
Equation (3.51) shows the key role played by the size distribution in 
connecting particles of all different sizes and indices of refraction with the bulk 
scattering coefficient.  Equations such as (3.52) were used to generate Fig. 
3.21. 

In practice, Eq. (3.52) usually is evaluated separately for each type of 
particle.  By particle type, we mean particles that have the same index of 
refraction (particles that are made of the same material), but which differ in 
size.  For the ith particle type, which might be cyanobacteria or clay mineral 
particles, we then have 

(3.53) 

Here  and 
type i. = 0.5 :m 
and  = 2.5 :m. The value of bi(8 ith particle 

 are the minimum and maximum diameters of particles of 
 For cyanobacteria, for example, these values might be 

) is the contribution by the 
type to the total scattering coefficient b(8), as was seen in Eq. (3.11). 
Corresponding equations can be written for other quantities, such as 
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absorption and backscattering.  Mie theory also gives us a cross section for 
scattering through angle R, Fd(R;8) with units of m2 sr!1. This cross section 
yields the volume scattering function $(R;8) via the same formalism as Eq. 
(3.53). 

Mie calculations applied to hydrologic optics have a venerable history. 
Early efforts at predicting bulk properties from assumed particle properties and 
size distributions are seen in Kullenberg (1974) and in Brown and Gordon 
(1974).  Brown and Gordon were unable to reproduce observed backscattering 
values using measured particle size distributions.  However, their instruments 
were unable to detect submicrometer particles.  They found that Mie theory 
properly predicted backscattering if they assumed the presence of numerous, 
submicrometer, low-index-of-refraction particles.  We may reasonably 
speculate that bacteria and the recently discovered colloids are the particles 
whose existence was inferred by Brown and Gordon.  Recent Mie calculations 
have used three-layered spheres to model the structure of phytoplankton (cell 
wall, chloroplasts, and cytoplasm core) and have used polydisperse mixtures 
of both organic and inorganic particles (Kitchen and Zaneveld, 1990b). 

Much of the utility of Mie theory lies in the fact that it gives us an 
overall theoretical structure for the analysis and modeling of IOP's.  It is not 
possible to measure directly all desired quantities.  Therefore, we measure what 
we can, e.g. beam attenuation, absorption, and particle size distributions.  Mie 
theory then can be used to determine consistent values for the missing pieces, 
e.g. particle refractive index and phase functions.  The comprehensive paper 
by Stramski and Kiefer (1991) shows how this  can be done.  Their paper is a 
good example of the sophisticated level of Mie-based computations now 
employed in optical oceanography. 

Considerable effort is now being expended in determining the optical 
properties of microbial particles, which are needed as input to the Mie 
calculations.  The optical properties of living cells depend in complicated ways 
on the cells' physiological state, which in turn depends on age, nutrient 
availability, ambient lighting, and the like.  Recent papers by Ackleson, et al. 
(1986), Bricaud and Morel (1986), Morel and Bricaud (1986), Stramski and 
Morel (1990), Morel (1991a), Ahn, et al. (1992), Stramski, et al. (1992), and 
Morel, et al. (1993) will connect the reader with the current literature on this 
fundamental topic. 

Further discussion of single-particle optics would take us beyond the 
immediate needs of radiative transfer theory.  Our point has been made, and we 
must proceed. 
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3.12 Closure 

One of the guiding principles of any science is the achievement of 
closure.  This means nothing more than making sure that "all the numbers add 
up" in a proper fashion.  Researchers in hydrologic optics commonly speak of 
three types of closure. 

Measurement closure refers to making accurate measurements. 
Consider, for example, the simple conservation-of-energy relation (3.3): 

We have commented on the difficulties in measuring a(8), and on the extreme 
difficulty of measuring b(8). For these reasons, b almost always is determined 
as c ! a. However, we can never be sure that a value of b so determined is 
correct, because there may be undetected random or systematic errors in the 
measured values of c or, especially, of a. However, if we could independently 
measure a, b, and c, so that a + b = c to high accuracy, then we could be 
confident that our instruments and measurement methodologies were giving 
correct values for a and c. We could then confidently use b = c ! a for routine 
determinations of b. 

Another example of measurement closure would be to make 
independent measurements of b and $(R), and then see if the measured b 
agrees with b computed as 2B*$(R)sinRdR. 

Making the transition from the optical properties of single particles to 
the bulk properties, as discussed in the previous section, is an example of scale 
closure, because the calculations connect the smallest and largest size scales. 
This form of scale closure provides a strenuous test of our understanding of the 
properties of the various constituents of natural waters and of the ways in 
which these constituents contribute to the overall properties of these waters. 

Another form of scale closure occurs when we measure IOP's on small 
samples of water, and then relate those IOP's to measured AOP's, which are 
determined by large volumes of water. 

The third type of closure is called model closure.  Here we ask whether 
analytical or numerical models for computing underwater light fields do indeed 
make correct predictions, given the IOP's and boundary conditions of a water 
body.  Errors in models can arise from simple coding errors in computer 
programs, or from the omission of relevant physics in the equations being 
solved.  For example, a model that omits fluorescence effects cannot be 
expected to provide accurate predictions for waters that 
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contain high concentrations of yellow matter or chlorophyll, both of which 
fluoresce strongly at certain wavelengths. 

Closure is in many ways the Holy Grail of hydrologic optics – always 
sought, never achieved.  Instrumental difficulties in measuring b and $ keep 
measurement closure just out of reach.  Single-particle-to-bulk-IOP scale 
closure via Mie theory requires a complete determination of the optical 
properties of the individual particles, which cannot be made.  Checking model 
closure requires comprehensive measurements of IOP's, boundary conditions, 
and underwater light fields (preferably the full spectral radiance distribution). 
The IOP's and boundary conditions are needed as input to the models, and the 
light field is needed for comparison with the models' predictions.  Such data 
sets have never been collected. 

In spite of its elusive nature, the goal of closure provides a valuable 
framework for prioritizing instrument development, for planning field 
experiments, and for guiding the development of ever-more-sophisticated 
numerical models.  Zaneveld (1994) discusses closure in more detail. 

3.13 Summary 

We have now defined and briefly surveyed various inherent and 
apparent optical properties of natural waters.  The optical properties of the 
constituents of natural waters are under active investigation, and we may 
anticipate that the crude models now available for absorption and scattering 
will be improved as time goes by.  However, the data and models presented in 
the chapter will be more than adequate for our subsequent discussions of 
radiative transfer. 

Figure 3.27 summarizes the relationships between the various 
radiometric quantities, IOP's and AOP's that we have discussed.  Note in the 
figure that radiative transfer theory, as expressed by the radiance transfer 
equation, is the mathematical structure that links the IOP's and the external 
environment of a water body to the radiometric quantities and AOP's of the 
water body. We now turn our attention to the development of this theory. 

3.14 Problems

3.1. Compute for the cardioidal radiance distribution of Problem 1.5. 

3.2. Compute , , , and R for the radiance distribution of Problem 1.7. 
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Fig. 3.27.  Relationships among the various quantities commonly used in 
hydrologic optics. [reproduced from Mobley (1994), by permission] 
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3.3.  At sea level on a clear day at noon, the solar irradiance in the "blue-green 
window" of greatest water transparency is about 50 W m!2.  How much of this 
irradiance will reach a depth of 1000 m in the clearest ocean water (use water 
properties for 450 nm)?  How does this compare with the irradiance at sea level 
at night?  At about what depth would there be only 1 photon m!2 s!1 of sunlight 
left?  Assume that the water surface transmits all of the sunlight.  If the sun 
were 10 times as bright, would the light reach 10 times as deep into the ocean? 

3.4.  You are working off of the west coast of North Africa.  On the first day 
of the cruise, you measure the inherent optical properties a, b, and . On the 
second day, a strong wind brings a severe dust storm from the Sahara Desert. 
The dust consists of very small (# 0.1 :m diameter) particles of clear quartz. 
After the storm, you measure the IOP's again.  Would you expect the 
absorption coefficient a (at a given wavelength) to increase, decrease, or stay 
about the same?  How about the scattering coefficient b (at a given 
wavelength)?  Would the wavelength dependence of b(8) become stronger, 
weaker, or stay about the same?  What changes would you expect in the shape 
of the phase function (e.g. relatively more/less/same forward scatter; 
more/less/same backscatter)?  Explain your reasoning for all of the above 
questions.  How would the above answers change if the dust particles consisted 
of opaque clay instead of quartz? 

3.5.  Roughly how far does near-infrared radiation of wavelength 8 = 1 :m 
penetrate into a lake before 99.9% of the radiation is absorbed?  How about 
thermal radiation of wavelength 10 :m?  You can estimate the needed values 
of a(1 :m) and a(10 :m) from Fig. 3.4. 
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