
PART III


SOLUTION METHODS


We now have developed a comprehensive theory of radiative transfer 
within natural water bodies, including the effects of the surface and bottom 
boundaries.  However, our theory is of limited value unless we can readily 
solve the associated equations.  Part III of our book therefore discusses selected 
numerical methods for solving radiative transfer equations in conjunction with 
their boundary conditions.  As in Chapter 4, sections dealing with specific 
details of numerical algorithms will be set off by bars. 

Chapter 6 shows how Monte Carlo ray tracing methods can be used to 
solve the radiance transfer equation within any water body, even those whose 
boundary conditions and inherent optical properties vary in all three spatial 
dimensions.  Although very general and powerful, Monte Carlo methods are 
computationally very inefficient for many problems in optical oceanography. 

Chapter 7 therefore begins the development of invariant imbedding 
solution methods, which are computationally very efficient for problems of one 
spatial dimension, e.g. for problems governed by the RTE of Eq. (5.23). This 
chapter develops the essential concepts of invariant imbedding theory in the 
setting of the two-flow irradiance equations, which provide a mathematically 
simple set of equations for illustrating the solution method. 

Chapter 8 then shows how invariant imbedding methods are applied to 
the radiance transfer equation itself. This chapter culminates in a specific 
numerical algorithm for solving the RTE along with the associated boundary 
conditions at the air-water surface and at the bottom. 

Chapter 9 begins with an overview of the discrete ordinates solution 
method.  This overview sets the stage for a general discussion of eigenmatrix 
solution methods, which are applicable to homogeneous water bodies. This 
chapter finishes with a discussion of the asymptotic radiance distribution, 
including numerical examples. 

Chapter 10 discusses inverse methods, whose purpose is to extract 
information about the inherent optical properties of a water body from light 
field measurements made either within the water body or remotely.  This 
chapter concludes with a discussion of ocean-color remote sensing. 



320


This Page Intentionally Left Blank 



Chapter 6


Monte Carlo Methods


In this chapter we present the most general technique for numerical 
solution of the radiance transfer equation.  By "most general" we mean that the 
technique is applicable to the time-dependent, three-dimensional RTE of Eq. 
(5.19) in a setting with arbitrary boundary geometry and incident radiance, and 
with arbitrary inherent optical properties within the water body.  This general 
technique employs Monte Carlo methods, which we already have seen applied 
in Chapter 4 to the computation of the air-water surface reflectance and 
transmittance functions.  We now extend those ray-tracing techniques to the 
water body itself. 

The idea underlying all Monte Carlo methods is this:  if we know the 
probability of occurrence of each separate event in a sequence of events, then 
we can determine the probability that the entire sequence of events will occur. 
In Section 6.1, we show how these probabilities are determined.  Our 
discussion there is straightforward but mathematically naive, and the resulting 
numerical algorithms are consequently inefficient.  In Sections 6.2 and 6.3, we 
take a more sophisticated look at Monte Carlo methods and learn how to 
improve their computational efficiency by many orders of magnitude. 

6.1 Forward Monte Carlo Methods 

For pedagogic purposes, let us consider the measurement of 
Ed z

L(a; ), 
downwelling plane irradiance  at some depth  below a random sea surface. 
Each point on the sea surface is illuminated by an incident sky radiance 
0 = d. Figure 6.1 illustrates a specific example of the fate of three photons. 

Photon a encounters the sea surface at point 1, where it is refracted into the 
water in direction 1. The photon then encounters a phytoplankton cell at 
point 2, scatters through an angle R, and continues on its way in direction 
until it encounters the irradiance detector at point 3.  Its energy contributes to 
the irradiance measured at point 3 [see Supplementary Note 10]. Photon b 
enters the water, travels a ways, and is absorbed by a water molecule at point 
4.  Photon c enters the water, undergoes scattering events at points 5 and 6, and 
continues into the oceanic depths.  Clearly, photons b and c do not contribute 
to the Ed measured at point 3. 

2 
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Fig. 6.1.  Illustration of three photon trajectories and of the computation of Ed. 

We can numerically simulate the physical situation just described.  A 
realization of the random air-water surface is generated as described in 
Sections 4.3 or 4.9.  Photon paths representative of the given sky radiance 
distribution are generated as in Section 4.4, and the air-incident photons are 
allowed to interact with the surface wave facets.  Now, however, rather than 
just tallying the directions of the transmitted photons, we continue to track the 
photons as they penetrate into the water body.  This is done as follows. 

Sampling photon path lengths 

Consider photon a as shown in Fig. 6.1 and, for simplicity, assume that 
the water is homogeneous.  After the photon enters the water, its direction 1 

is known from its initial direction and subsequent interactions with the water 
surface.  We next must determine how far the photon travels in direction 1 

before it encounters a water molecule or other particle.  To see how this can 
be done, think of photon a not as one photon but as a collimated beam or ray 
of many photons, as was done in Chapter 4.  This beam has some radiance 
L( ; 1), which decreases with distance according to Eq. (5.15): 
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or 

Here, as before, r is geometric distance along direction 1, measured from 
some reference point at r = 0. In terms of the optical path length l = cro

defined in Section 5.7, we have 

(6.1) 

This decrease in radiance can be explained in terms of the fate of 
individual photons if the probability of any particular photon being absorbed 
or scattered out of the beam between optical path lengths l and l+dl is 

(6.2) 

Note that this pl(l) satisfies 

as is required of any probability density function (pdf).  The probability that a 
photon is absorbed or scattered somewhere between l = 0 and l is given by the 
cumulative distribution function Pl(l): 

(6.3) 

Now let U be a random number drawn from the unit interval between 
0 and 1 such that U is equally likely to have any value 0 # U # 1. We denote 
this distribution of U by saying that U is uniformly distributed on the interval 
0 to 1. The associated pdf of U is given by 

We wish to use the randomly drawn U, which is a known number, to determine 
a value for l. The key to this determination is to regard going from U to l as 
a change of variables.  Then the probability that U is in some interval U to 
U+dU is pU(U)dU, and the probability that l is in a corresponding interval l to 
l+dl is pl(l)dl. These two probabilities must be equal, in which case 
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Because pU(U) is known, the left-hand integral can be evaluated.  The 
preceding equation then becomes 

We now make the following observation, which is sometimes called the 
fundamental principle of Monte Carlo simulation (Cashwell and Everett, 
1959): The equation U = Pl(l) uniquely determines l in such a manner that l 
falls in the interval l to l + dl with frequency pl(l)dl.  This result is completely 
general. 

In the case at hand, 

gives 
(6.4) 

We can therefore use Eq. (6.4) to randomly determine the optical path length 
l traveled by a photon between one scattering or absorption event and another. 
Distances so chosen, when applied to many photons in a collimated beam, are 
consistent with the radiance behavior of Eq. (6.1). 

Note that since 1!U is also uniformly distributed on the interval 0 to 
1, we can just as well draw U and use 

(6.5a) 

or 

(6.5b) 

in terms of the geometric distance r = l/c. 
We note in passing that the average geometric distance +r, = +l/c, 

traveled by photons between interactions is 

(6.6) 

The average distance +r, is called the mean free path, and Eq. (6.6) shows that 
the beam attenuation coefficient is just the reciprocal of the photon mean free 
path. 
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Sampling photon interaction types 

The preceding observations on how to randomly determine photon path 
lengths r give us the conceptual tools necessary to simulate almost any physical 
process.  Suppose we have decided, using the random-number method 
described above, that a photon should travel a distance r (e.g. from point 1 to 
point 2 of Fig. 6.1).  The photon then interacts with the medium (at point 2). 
We next need to decide at random if the interaction is to be an absorption or a 
scattering event.  This is easily done by drawing another random number U 
from U[0,1] and comparing it with the albedo of single scattering, T / b/c.o 

If U > To, we let the interaction be an absorption event; if U # T , the o

interaction results in scattering.  Note that this procedure on average produces 
absorption and scattering events in the respective proportions of a/c and b/c. 
This use of To makes clear why it is sometimes called the probability of photon 
survival. 

Sampling scattering directions 

If the interaction results in absorption, we terminate the photon, as is 
b of Fig. 6.1. 

. 
( 6 

into direction . 

the fate of photon If the interaction is a scattering event, we can 
randomly determine the new photon direction by use of the phase function 
Recall that ) can be interpreted as a probability density function for 
scattering from direction Thus the probability of scattering 
into an element of solid angle dS( ) centered on direction is 

Here R and n are the directions of the scattered photon in a coordinate system 
centered on the incident direction . 

In natural waters,  depends only on the scattering angle R. Therefore 
(R,n) = (R), and R and n are independent random variables, which means 

that two random numbers must be drawn in order to determine both R and n. 
The independence of R and n also means that the joint pdf can be written as a 
product of pdf's for R and n: 

(6.7) 

The azimuthal angle n (which determines the plane of the scattering event 
relative to some reference direction) is uniformly distributed on the interval 
from 0 to 2B. Thus pn(n)dn = (1/2B)dn. We can use this result in Eq. (6.7) 
to identify the pdf pR(R) to be used for determining R: 
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(6.8) 

In order to determine the scattering angle R, we draw a random number U 
from the uniform distribution on 0 to 1 and set 

(6.9) 

Because of the complicated shape of (R), Eq. (6.9) must in general be solved 
numerically in order to determine the value of R corresponding to U. The 
same type of analysis applied to n yields 

(6.10) 
where this U is yet another random number drawn from the uniform 
distribution on 0 to 1. 

We have now seen in some detail how to randomly determine photon 
path lengths, types of interactions, and scattering directions.  The same type of 
reasoning is easily extended.  For example, if we decide that a particular 
interaction will be a scattering event, then we can randomly decide if the 
scattering will be by a water molecule or by a large particle, with different 
phase functions to be used for each case.  If the scattering is to be by a water 
molecule, we can choose whether it will be elastic scattering or Raman 
scattering to another wavelength 8, where 8 will be chosen at random using the 
Raman wavelength redistribution function of Eq. (5.94) as the relevant pdf. 

Solving the RTE 

It should be clear that, as we trace many photons, we are building up 
a solution of the RTE one photon at a time.  This is exactly what nature does. 
The occasional photon that enters the detector shown in Fig. 6.1 contributes to 
the desired value of Ed. We can compute any other radiometric quantity by a 
suitable tally of the photons.  For example, if we count only the photons 
traveling within a small element of solid angle at a given location, we are 
building up the radiance in that direction at that location.  Simulated detectors 
can of course be placed throughout the air and water.  Note also that the 
boundary conditions are automatically "built in" to the solution as the photons 
interact with the surface or other boundaries.  Internal sources can be included 
in the RTE (5.23) by generating photons at the desired locations within the 
water.  The directional and wavelength distributions of the internal source 
photons are randomly determined from pdf's chosen to represent the internal 
source. 
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For simplicity of notation in Eqs. (6.1)-(6.6), we assumed that the water 
was homogeneous.  This is not necessary. One possible procedure is to divide 
the water column into many thin layers, each of which is taken to be 
homogeneous, and then proceed as above within each layer.  However, even 
this complication is unnecessary if we work with optical path lengths l rather 
than with geometric distances. That is to say, we can solve the RTE (5.24) in 
terms of optical depth . without regard for spatial inhomogeneities in the 
actual water body.  If we wish to place our simulated photon detectors at 
specific geometric depths, then we must convert these depths to the 
corresponding optical depths at the start of the Monte Carlo simulation, in 
order to know where to tally the photons. Conversely, we can tally the photons 
at conveniently chosen optical depths, and then determine the corresponding 
geometric depths when the final output is produced at the end of the 
simulation. 

The procedures just described are called forward or analog Monte 
Carlo methods.  "Forward" reminds us that the photons are traced forward in 
time, just as in nature (the significance of this phrase will be seen in the next 
section).  "Analog" means that the mathematical simulation is an exact analogy 
to the physical processes being studied. 

Strengths and weaknesses 

We can now make several observations about these forward Monte 
Carlo methods: 

!	 They are conceptually simple. The methods are based on a 
straightforward mimicry of nature.  This in itself endows the 
methods with a certain elegance. 

!	 They are instructive. The methods highlight the fundamental 
radiative transfer processes of absorption and scattering, and they 
make clear the connection between the photon-level and the energy-
level formulations of radiative transfer theory. 

!	 They are very general. The methods are applicable to any 
geometry, incident lighting, scattering phase function, distribution 
of inherent optical properties, etc.  It is easy to include polarization. 

!	 They are simple to program for a digital computer.  The methods 
are also well suited to parallel processing, in which many 
independent photons are traced at once. 
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!	 They provide no insight into the underlying mathematical structure 
of radiative transfer theory. 

!	 They can be computationally extremely inefficient. In a situation 
like the one illustrated in Fig. 6.1, almost all of the photons 
generated are "wasted" because they never intercept a detector. 

A simple calculation allows us to estimate the potential magnitude of 
this computational inefficiency.  As a worst-case scenario, suppose in Fig. 6.1 
that the irradiance detector is located at the bottom of the euphotic zone, i.e. at 
a depth z  where Ed(zeu) . 0.01Ed(0). Table 3.18 shows that zeu can be greater eu

r

than 100 m in clear ocean waters.  Now there is some region of sea surface 
centered above the detector, within which the photons incident on the surface 
have a significant chance of eventually reaching the detector.  Suppose this 
surface region is a circle of radius rsurf.  In order to properly estimate Ed(zeu), we 
should let photons fall onto the sea surface throughout the region defined by 

surf.  But only approximately 1% of the photons incident on the sea surface will 
reach depth zeu, and of those only a few will actually strike the detector.  If the 
detector is a circle of radius rdet, then the ratio of photons actually hitting the 
detector at depth zeu to the number of photons incident on the surface region is 

For reasonable values of rdet = 0.01 m and rsurf = 100 m, the proportion of 
"useful" photons is then 10!10. Thus on average only one photon in 1010 is 
actually counted by the detector in the computation of Ed. Such a situation can 
arise in problems that are inherently three-dimensional.  An example would be 
a computation of ship-shadow effects on an instrument in the water near the 
ship. 

However, the situation just described is unreasonably pessimistic from 
the viewpoint of most oceanographic problems.  We note in particular that if 
the water body is horizontally homogeneous, then every photon reaching the 
depth of the detector can to used to compute Ed at that depth. In the example 
above, we are then using 1% of the initial photons, not just 1 in 1010. This is 
a rather significant improvement, although we are still wasting 99% of our 
photons. 

Another drawback of all Monte Carlo methods is the presence of 
statistical sampling noise in the estimated values.  In the above example, each 
photon collected contributes to the Ed value. But since the photons come from 
random directions, and since each is weighted by a cos2 factor, 
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the "current estimate" of Ed changes as each new photon is collected. 
According to standard statistical reasoning, the standard error of the estimate 
(the sample standard deviation) is proportional to n!½, where n is the number 
of photons collected.  Thus if we wish to improve the accuracy of a given 
estimate by a factor of ten, we must collect 100 times as many photons. This 
slow convergence to the true value of the estimated quantity can be a serious 
computational disadvantage if very accurate estimates are required. 

However, in computations of Ed, the statistical noise is seldom a 
problem even at great depths.  Consider, for example, a Monte Carlo 
simulation that introduces 106 photons at the sea surface.  If 1% of these 
photons reachs the bottom of the euphotic zone, we still have left n = 104 

photons.  In this case, n!½ = 0.01, so that we can estimate Ed to 1% accuracy. 
This is better accuracy than can be achieved with standard oceanographic 
instruments.  Tracing 106 photon histories is well within reason for routine 
computations. 

However, if we are computing the zenith (nadir-viewing) radiance, then 
only the relatively few photons that are backscattered into a small solid angle 
centered on the zenith direction can be tallied.  In such a situation, sampling 
noise can be a serious problem. 

The next two sections present ways to minimize the computational 
disadvantages of the forward Monte Carlo methods.  Backward Monte Carlo 
methods allow us to make use of almost every photon generated, no matter 
what radiometric quantity is being estimated.  Variance reduction techniques 
allow us to play our statistical sampling games with "loaded dice," in order to 
make better use of each generated photon. 

6.2 Backward Monte Carlo Methods 

As we have just seen, very few of the simulated photons incident on the 
sea surface are actually collected by a simulated instrument at a particular 
location.  Indeed, if the instrument is approximated as a point, then there is 
zero probability of a photon intercepting the instrument.  Moreover, when 
simulating inherently three-dimensional situations, we cannot know in advance 
how large an area on the sea surface should receive photons, because this 
region of influence depends on environmental conditions, water IOP's, and 
instrument location and orientation. 

Reciprocity relations and adjoint problems 

We therefore seek to formulate a problem that can be solved efficiently, 
and whose solution can be transformed into the solution of the 
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problem at hand.  The key to constructing and solving this adjoint problem is 
the following simple but profound observation.  Consider for example photon 
a of Fig. 6.1, which is traveling in direction 2 when it intercepts the detector. 
If a photon were to leave the detector traveling in direction ! 2, then that
photon would exactly retrace the path of the original photon, all the way back 
to the original photon's source. We already have commented in Section 4.2 on 
this reciprocity for photons crossing the air-water surface.  The same result 
holds true within the water so long as (! 6! ) = ( 6 ), which is the
case in natural waters.  We now ask whether it is in some way possible to 
generate photons at the detector, trace them on their random journeys away 
from the detector, tally them as they leave the air-water surface heading 
upward, and convert this final tally into an estimate for the desired Ed value (or 
for any other radiometric quantity).  If this is possible, then every photon 
generated will contribute to the estimate of Ed.  We now show how this is done. 

Figure 6.2(a) illustrates the original problem of Fig. 6.1, and Fig. 6.2(b) 
shows the corresponding time-reversed or adjoint problem. Points lying on the 
boundary surface B of the ocean volume V are denoted by . ForB

mathematical preciseness, the boundary B also includes the lateral and bottom 
boundaries of the volume V, but we show only the sea surface itself (the other 
boundaries can be taken to be at infinity if desired).  Vector gives theD

position of a detector measuring, say, Ed.  An arbitrary point within volume V 
is denoted by . There is an air-incident radiance L1( ), 0= d, falling into 
the air-water surface.  The outward normal to the boundary surface is 

B; 
. To 

avoid notational complications arising with a wave-covered sea surface, we can 
imagine a horizontal monitoring surface (h.m.s.) just above the mean sea 
surface, as was done in Section 4.5.  The normal to the h.m.s. just above the sea 
surface is then = ! . The index of refraction of the water is n ; that of thew

air is taken to be n  = 1. Figure 6.2(a) shows a typical photon path going froma

air to detector. 
Case (1957) shows that the following reciprocity relation holds true: 

(6.11) 

On the left hand side of Eq. (6.11), the integral over B is an integral over the 
entire boundary surface (dB is an element of area), and the integral over S is 
an integral over all directions toward the surface. The integrals on the right 
hand side are over the entire volume (dV is an element of volume) 
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Fig. 6.2  Illustration of the original (forward) and adjoint (time-reversed) 
problems used to develop backward Monte Carlo methods. 

and over all directions.  L1( ) is the incident radiance falling onto the
boundary surface (since 

B; 
< 0) in the original problem, and L1( ) is the

radiance leaving the surface (since !
B;! 

> 0). Likewise, L2( ) is the
radiance falling onto the surface in the adjoint problem, and L2( 

B; 
) is the

radiance leaving the surface.  We shall consider only that part of the total 
boundary B that corresponds to the air-water surface.  Thus L1( 

B;! 

) and
L2( 

B; 
) correspond to the air-incident radiances for the original and adjoint 

problems, respectively, and L1( 
B; 

) and L2( ) are the water-leaving 
radiances for the original and adjoint problems.  S1 and S2 are respectively the 
internal sources for the original and adjoint problems.  The origin of the n !2 

B;! B;! 

w 

factors on the right hand side of Eq. (6.11) can be traced to the L/nw
2 terms in 

Eq. (5.19).  In Eq. (6.11) note the juxtaposition of original-problem quantities 
whose photons are traveling in a given direction, with adjoint-problem 
quantities whose photons are traveling in the opposite direction.  This very 
general result is the quantitative foundation of backward Monte Carlo methods. 

Example 

Gordon (1985) nicely exploited Eq. (6.11) in the oceanic setting.  We 
shall illustrate his development with a specific example.  Let us assume that 
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we wish to compute Ed( D), that the incident sky radiance is a cardioidal 
distribution, and that there are no internal sources in the original problem.  We 
therefore take 

(6.12) 

where L  and C are positive constants.  By definition the desired irradiance o

D) in the original problem is Ed( 

(6.13) 

where we have recalled our choice of coordinate systems with  positive 
downward. 

Now choose the internal source for the adjoint problem to be 

(6.14)


where Jo is a positive constant.  Then the right hand side of Eq. (6.11) reduces 
to 

(6.15a) 

(6.15b) 

(6.15c) 

In going from Eq. (6.15a) to (6.15b) we have used the properties of the Dirac 
delta function, and we have let 6 !  and recalled Eq. (6.13) in  going from 
(6.15b) to (6.15c). 

In the adjoint problem there is a source S2 within the water, and photons 
are leaving the surface.  However, there is no air-incident radiance, so 
L2( ) = 0. The left hand side of Eq. (6.11) therefore reduces to B; 
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(6.16a) 

(6.16b) 

(6.16c) 

Here we have substituted for L1( ) from Eq. (6.12) and defined the quantity B; 

(6.17) 

As already noted, L2( B;! ) is the adjoint radiance leaving the surface (  < 
0 Y 0= d, so ! 0= u). Thus  is similar in form to the adjoint upward 
plane irradiance just above the surface, Eu2( B). The difference is that in 
computing , each photon leaving the surface is weighted by a geometric 
factor proportional to the angular distribution of the incident radiance 

) in the original problem. The quantity is easily computed by 
appropriately tallying the photons that leave the air-water surface. 

We have now reduced Eq. (6.11) to 

L1( B; 

(6.18) 

This equation relates the desired quantity Ed1( D) in the original problem to 
known or computable quantities in the adjoint problem.  We can rewrite Eq. 
(6.18) by recalling from problem 1.5 that the original downward plane 
irradiance onto the sea surface for the cardioidal distribution of Eq. (6.12) is

  Moreover, the total power P2 emitted by the adjoint source of Eq. (6.14) is 

Using these results in Eq. (6.18) gives 
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(6.19)


Thus the ratio of the irradiance at the detector to the irradiance incident on the 
sea surface in the original problem is proportional to the ratio of a computable 
quantity (with units of watts) to the power emitted by an imbedded source in 
the adjoint problem.  This statement holds in general, even though we have 
deduced it by reference to a specific problem. 

Strengths and weaknesses 

We now have seen the essence of backward Monte Carlo methods. 
Given an original problem, we must first conjure up an adjoint source S2 that 
will allow us to extract the original quantity of interest from the right-hand side 
of Eq. (6.11).  Using the adjoint source, we then generate and trace photons. 
Each photon leaving the boundary gets weighted by a factor proportional to the 
incident radiance distribution of the original problem.  A tally of the weighted 
photons leaving the boundary then yields the original quantity of interest. 
Table 6.1 shows the source functions S2 that yield commonly used radiometric 
quantities. 

There is one common situation for which the above scheme requires 
modification:  the case of a collimated incident radiance distribution.  In this 
case the weighting function for the photons exiting the sea surface is a Dirac 
delta function specifying the direction of the collimated incident radiance. 
Thus almost all photons exiting the surface in the adjoint problem would 
receive a weight of zero, since they would not exit parallel to the incident 
photons of the original problem.  Gordon (1985) presents a suitable simulation 
strategy for this special case. 

In addition to their obvious computational efficiency (almost all 
generated photons are eventually tallied), backward Monte Carlo methods 
avoid several subtle problems inherent in forward methods.  For example, we 
do not need to decide in advance how large a region of the water surface 
should receive incident photons.  Also, the size of the detector does not 
influence the number of photons recorded.  Backward Monte Carlo methods 
can even simulate point detectors, which is not possible in forward Monte 
Carlo methods. 

Backward Monte Carlo methods hold the greatest computational 
advantage over forward methods when the incident light source is spatially 
distributed and the detector acceptance angle is small.  This is precisely the 
situation in hydrologic optics when sun and sky light falls in the water 
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Table 6.1.  Source functions S2( ; ) for use in backward Monte Carlo 
simulations leading to various radiometric quantitiesa. 

desired source 
radiometric function 

quantity S2( ; ) 

!J @ *( ! D) if @  < 0o 

Ed( D) 
9  0 if @ $ 0 

0 if @ # 0 
Eu( D) 

9 J @ *( ! D) if @  > 0o 

Eo( D) J *( ! D) for all @o 

L( ) J *( ! ) *( !D; D)o 

a. Based on Gordon (1985) 

surface, and when we wish to compute radiometric quantities at fixed points 
within the water.  If the incident radiance distribution in the original problem 
is generated by a point source, then backward Monte Carlo methods hold no 
advantage over forward methods.  An example of a forward Monte Carlo 
simulation of bioluminescence modeled as an embedded point source is seen 
in Gordon (1987).  However, the reciprocity relation (6.11) can still be of 
utility in point-source problems.  Gordon (1984) used it to great advantage in 
an analytic study of the effect of the depth of a bioluminescent point source on 
the remotely sensed signature of the point source. 

A path different than Eq. (6.11) but still leading to backward Monte 
Carlo methods was taken in pioneering papers by Collins, et al. (1972) and 
Adams and Kattawar (1978).  They viewed the reformulation from forward to 
backward Monte Carlo as a change of variables from "source" to "detector" 
coordinates.  The end result is the same as our development based on the 
reciprocity relation (6.11). 

We end this section by pointing out that the reciprocity relation (6.11) 
rests on the validity of the time-reversal symmetry of photon paths, i.e. on the 
fact that two photons with directions  and !  trace out the same paths in 
space. This symmetry itself can be traced back to the time­
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reversal invariance of Maxwell's equations.  Note that time reversal is not the 
same thing as simply interchanging the source and receiver locations. 

6.3 Variance Reduction Techniques

Regardless of whether we use forward or backward Monte Carlo 
methods, there are random errors in the estimated quantities because of the 
inherently statistical nature of Monte Carlo methods.  However, it is often 
possible to reduce these random errors (for a given amount of computational 
expense) through the use of clever sampling strategies. 

The simplest such strategy is this:  never waste a photon. For 
simplicity of the preceding discussions and to highlight the relevant physics, 
we have talked about simulating photons one at a time.  This is not good 
practice because an absorbed photon never reaches a detector. The 
computational expense of generating and tracking the photon before its 
absorption is therefore wasted.  This inefficiency is easily avoided by 
considering each "photon" in the above discussions to be a packet or ray of 
many identical photons.  The "weight" w of this photon packet is usually set to 
w = 1 when it is generated. At each subsequent interaction, the weight is 
multiplied by T  = b/c, and the packet is scattered into a new direction for o

further tracing.  Multiplying the current weight by To is equivalent to saying 
that a fraction 1 ! T  = a/c of the photons in the packet is absorbed, and ao

fraction b/c continues on its way in the scattered direction. This is analogous 
to what was done in Section 4.4 when rays interacting with the air-water 
surface had their weights (radiant powers) multiplied by Fresnel reflectances 
and transmittances.  A ray is traced until it is tallied by a detector or until its 
weight drops below some prechosen value, say 10-6. 

Biased Sampling 

There are many schemes for reducing the variance (i.e. the statistical 
error) in estimates by the use of biased sampling. The general theory of these 
techniques is simple.  Suppose we wish to compute the expected value +f, of 
some function f(x) of a random variable x, which is drawn from the (correct) 
probability density function p(x). Then by definition 

and the variance in f is by definition 

(6.20) 
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Now suppose that we draw the random variable x from some other density 
pb(x), the biased pdf. Then 

(6.21) 

The quantity w(x) is called the statistical weight. Note that the expected value 
of f computed when using the correct pdf, +f,, equals the expected value of fw 
computed when using the biased pdf, +fw,b. The variance of fw computed with 
the biased distribution is 

(6.22)


Now if w(x) is carefully chosen, the variance computed in Eq. (6.22) will be 
less than the variance computed by Eq. (6.20).  But the converse is also true: 
a poor choice of w(x), i.e. a poor choice of pb(x), can increase the variance of 
the computed expectation. 

Examples 

We can illustrate these ideas with two specific examples.  Gordon 
(1987) studied the spatial distribution of irradiance at the sea surface resulting 
from an isotropically emitting point source of bioluminescence embedded at 
a fixed depth within the ocean.  The physically correct pdf that describes an 
isotropic point source is p(2) = ½sin2, where 2 is the usual polar angle (see 
problem 6.1).  However, Gordon wisely observed that photons emitted into 
downward directions, 0= d or 0 # 2 < 90°, are usually "wasted" because of the 
small chance that they will be scattered into upward directions and eventually 
reach the surface.  He therefore chose to generate the photon polar angles by 
using a biased distribution 

where 0 # , < 1.  This distribution generates a disproportionate number of 
photons in upward directions, 90° # 2 # 180°.  It is these upward photons that 
are most likely to reach the surface and contribute to the estimate of the 
irradiance. Each photon was given an initial weight 
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so that the surface irradiance estimated using the biased distribution would 
equal the irradiance estimated if the correct, unbiased distribution had been 
used; recall Eq. (6.21).  After generation, each photon was tracked using 
forward Monte Carlo methods, which was appropriate since this problem 
involved a point source and a spatially extensive detector (at the sea surface). 

The directional biasing just described is an example of what is known 
as importance sampling. Gordon biased the photon generation in favor of 
those directions that make the most important contribution to the quantity of 
interest.  Since more photons were created heading upward, and thus more 
reached the surface, the variance of the estimated irradiance is smaller (for a 
given number of photons generated and traced). 

Another example can be based on the same problem.  Suppose that 
now we are interested in the underwater light field set up by the embedded 
point source.  Any photon (i.e. packet of photons) that is emitted into an 
upward direction 0 = u, and which makes its way from the source to the 
surface and into the air without any collisions in the water body, is wasted as 
far as the underwater light field simulation is concerned.  If the source is near 
the surface in clear water, randomly drawing the photon optical path lengths 
l from p(l) = e!l, as in Eqs. (6.2) and (6.5a), will result in many photons that 
escape the water body without any interactions. 

Let ls be the optical path length along direction 0 = u from the point 
of generation (or scattering) to the water surface.  Now let us sample the path 
length l from the biased pdf 

Use of this distribution guarantees that there will be an interaction somewhere 
along the path to the surface.  Use of this sampling scheme is therefore called 
the method of forced collisions.  It is a good example of the principle of never 
wasting a photon.  The corresponding weight is 

The photon weight at the time of generation or scattering must be multiplied 
by w(ls) in order to remove the effects of the biased sampling on the estimated 
quantity of interest.  Because this weight is always less than one, its use will 
always reduce the variance. 

Each of the above examples illustrates a general tenet stated by 
Hammersley and Handscomb [(1964), quoted by permission of Chapman and 
Hall, Ltd.]:  "never sample from a distribution merely because it arises 
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in the physical context of a problem, for we may be able to use a better 
distribution in the computations and still get the right answer." 

6.4 Summary 

We have now seen that Monte Carlo methods provide powerful ways 
to solve general radiative transfer problems.  However, Monte Carlo methods 
are often computationally very expensive.  This is especially true if an accurate 
estimate of the entire radiance distribution is desired, or if radiometric 
quantities are desired at large optical depths. In computing upwelling 
radiances via backward Monte Carlo methods, photon packets must still be 
initiated in downward directions.  Relatively few photons are scattered upward 
and eventually reach the surface where they are tallied.  Thus many more 
downward photons must be initiated than would be the case if only 
downwelling irradiances, say, were desired.  Moreover, because the number of 
surviving photons decreases exponentially with optical path length, the number 
of initial photons required to yield a given number of photons at a detector 
increases exponentially with the optical path length or depth.  Thus computing 
a quantity at . = 10 optical depths, versus the same computation at . = 5, 

5requires roughly e10/e . 150 times as many photons  to be traced.  For these 
computational reasons, Monte Carlo methods are best suited to computations 
of irradiances at shallow depths (. # 5). However, for such problems, Monte 
Carlo methods can be very efficient, especially when one accounts for the 
programmer's time required in writing and debugging the associated computer 
code.  It is also easy to incorporate polarization into Monte Carlo methods; see, 
for example, Kattawar and Adams (1989).  For problems with irregular 
geometry, there may be no other applicable solution method. 

The literature abounds with Monte Carlo methods, variance reduction 
techniques, and tricks-of-the-trade for speeding up Monte Carlo calculations. 
However, any further discussion of these matters would take us too far from 
the subject of hydrologic optics.  The books by Hammersley and Handscomb 
(1964), Spanier and Gelbard (1969), and Cashwell and Everett (1959) each 
provide good introductions to Monte Carlo methods.  A mathematically 
advanced treatment of the subject is given in Marchuk, et al. (1980). 
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6.5 Problems 

6.1.  Develop a random sampling scheme that could be used in a Monte Carlo 
simulation to generate photons emitted from an isotropically emitting point 
source. 

6.2.  Develop an algorithm for randomly choosing scattering angles R in a 
manner that is consistent with the phase function for pure water given by Eq. 
(3.20). 

6.3.  Develop a sampling scheme to incorporate a Lambertian surface into a 
Monte Carlo simulation, i.e. show how to determine what happens to a photon 
packet that intersects such a surface. 

6.4.  We saw in Eq. (6.6) that the average distance traveled by photons is 1/c. 
What is the standard deviation of the distance traveled? 
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