
Chapter 9


Eigenmatrix Methods


The inherent optical properties of natural water bodies usually depend 
on depth, and the solution methods developed in the previous chapters are able 
to solve the radiance transfer equation in water whose IOP's vary arbitrarily 
with depth.  There would thus seem to be little justification for studying 
solution methods that are applicable only to homogeneous water bodies – 
those whose IOP's are independent of depth.  However, the restriction to 
constant IOP's is not a serious one.  We can always divide the water body into 
many thin layers, each with constant IOP's, but with different IOP's for 
different layers.  A sufficiently fine division of this type can give an acceptable 
approximation to the actual depth profile of IOP's.  We already have 
mentioned this approach in our discussion of Monte Carlo methods. 

If a highly efficient solution method for homogeneous waters can be 
developed, then it may be advantageous overall to solve the RTE within each 
layer, and then to combine these "layer solutions" to obtain the solution of the 
RTE for an inhomogeneous water body.  This is precisely the approach taken 
in the discrete-ordinates solution method, to be discussed in the next section. 

We shall find that the discrete-ordinates approach leads to a matrix 
equation that has precisely the form of Eq. (8.57) for the spectral amplitudes. 
Now, however, the local transfer matrix K will be independent of depth. The 
depth independence of K will allow us to solve the RTE as a matrix 
eigenvalue-eigenvector problem, rather than resorting to the depth integration 
of differential equations.  This matrix formulation also will enable us to 
establish a profound and useful connection with the fundamental-solution 
formalism of the previous two chapters.  On the practical side, the eigenmatrix 
solution immediately gives the asymptotic radiance distribution L4(:) and 
asymptotic attenuation coefficient k4, which were introduced in Section 5.8. 
We also will learn how to compute the reflectance  of an infinitely 
deep, homogenous slab of water S[m,4].  Recall from Eq. (8.93) that 
can be used in the specification of the bottom boundary condition for the 
integration of the Riccati equations. 

In this chapter we shall make an additional assumption, namely that the 
water is free of any internal sources such as bioluminescence or light 
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inelastically scattered into the wavelength of interest.  This is not a necessary 
assumption for our development.  The discrete-ordinates method easily 
accommodates internal source terms, and they are routinely included in 
applications of the method to atmospheric radiative transfer problems.  In the 
previous chapter we laboriously included the source terms in all equations, in 
order to show explicitly how they are handled.  Now, however, we wish to 
concentrate on those aspects of the theory that are peculiar to homogeneous 
water bodies.  Carrying along an internal source term in all equations would 
add little to our discussion; omitting the source terms will simplify the 
equations. 

9.1 The Discrete-Ordinates Method 

This powerful solution method is based on approximating the 
scattering phase function as a series of Legendre polynomials, truncated to a 
finite number 2n of terms: 

(9.1) 

Here the gk are the expansion coefficients, and the Pk are Legendre 
polynomials.  It will prove convenient [see Eqs. (9.6) and (9.11)] to have an 
even number of terms in Eq. (9.1), hence the upper limit of 2n!1 in the sum. 
For the moment, we consider n to be an arbitrary integer; we shall discuss 
below how to determine its value. 

Legendre polynomials are treated in textbooks on mathematical 
methods of physics, for example Boas (1983) or Mathews and Walker (1965). 
They can be defined in general by 

where x = cosR in the context of Eq. (9.1).  The first few Legendre 
polynomials are 

(9.2) 
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The Pk form a complete set of orthogonal functions on the interval !1 
# x # 1. They satisfy the orthogonality relation 

(9.3) 

where * k,m is the Kronecker delta function of Eq. (1.19). 
Multiplying Eq. (9.1) by Pm(cosR)sinR, integrating over R, and using 

Eq. (9.3) gives the expansion coefficients: 

(9.4) 

Chandrasekhar (1960) shows that if (R) is written as (:N,NN6:,N), then the
expression equivalent to Eq. (9.1) is 

(9.5) 

where 

and the Pk
l are associated Legendre polynomials, defined by 

for l = 0, 1, ..., 2n!1 and k = l, ..., 2n!1. Note that in gk
l and Pk

l, the superscript 
l denotes an index, not the lth power. 

The reason for choosing Legendre polynomials as the basis for 
expansion of the phase function is that they are mathematically consistent with 
an expansion of the radiance as a Fourier cosine series (Shifrin, et al., 1972): 

(9.6) 

Just as in Chapter 8, denotes a Fourier radiance amplitude. Now, 
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however, we are dealing with a continuous function of : and N – no mention 
has been made of quad averaging.  Consequently, the value of n is still 
unspecified, and the radiance amplitudes are given by 

which is the continuous-function equivalent of Eq. (8.22). Note also that the 
presence of the arbitrary phase angle N  in Eq. (9.6) makes this equationo

equivalent to an expansion of L in sines and cosines, as was done (for the 
discrete case) in Eq. (8.31). 

Because of the mathematical consistency between Fourier expansions 
of L and Legendre expansions of , the exact infinite-series versions (i.e, 
replace 2n!1 by 4) of Eqs. (9.1), (9.5) and (9.6) are often used in theoretical 
radiative transfer studies, even when the discrete-ordinates method is not being 
employed.  Many such examples can be found in the papers collected by 
Kattawar (1991). 

Reduction of the RTE to matrix form 

The RTE (5.24), written for the special case of depth-independent 
IOP's and source-free water, is 

(9.7) 

The next step in the development of the discrete-ordinates method is to 
substitute Eqs. (9.5) and (9.6) into Eq. (9.7).  The rather messy result is then 
simplified by noting that 

All terms in the resulting equations involve cosl(N!No). Recalling the linear 
independence of cosl(N!No) for different l values [just as in the development 
of Eqs. (8.37) and (8.38)] decouples the spectral from Eq. (9.7) into 2n 
independent equations of the form 
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(9.8) 

where l = 0, 1, ..., 2n!1. 
We next approximate the integral in Eq. 9.8) as a summation.  This is 

usually done by double Gauss-Legendre quadrature, in which an integral over 
!1 # : # 1 is written as 

(9.9) 

Here the aj's are weights corresponding to the abscissa points : . Both the aj'sj

and :j's are determined in a straightforward manner from the roots of the 
Legendre polynomial P2n(:). The details of these computations need not 
concern us here; we note only that a!j = a  and :!j = !: . The rationale for this j j

quadrature scheme is discussed, for example, in Stamnes, et al. (1988). 
Algorithms and computer code for computing the aj's and : 's are found in j

Press, et al. (1986). 
Applying Eq. (9.9) to (9.8) gives 

(9.10) 

or 

(9.11) 

Note that in going from Eq. (9.8) to (9.10) via (9.9), we have replaced the 
continuous : variable by the discrete values :i, i = !n, ..., !1, 1, ..., n, 
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determined as in Eq. (9.9).  This is the manner in which the discrete-ordinates 
method discretizes the polar angle :. 

In going from Eq. (9.10) to (9.11) we have merely rearranged terms 
and defined 

(9.12) 
and 

(9.13) 

for i, j = !n, ..., !1, 1, ..., n. 
It should be noted that the Cj,i are known quantities that depend only 

on the IOP's (both directly via To and indirectly via the expansion coefficients 
of ) and on the quadrature weights. 

:

Definitions (9.12) and (9.13) are made in order to highlight the matrix 
character of the amplitude Eq. (9.11).  Note that Eq. (9.11) splits into two sets 
of equations.  The set with i < 0 corresponds to upwelling radiances (:i < 0, or 

i 0 = u); the set with i > 0 corresponds to downwelling radiances (:i > 0, or :i 

0 = d). Recall that :!i = !:i. It is therefore convenient to define two 1×n 
matrices. 

and (9.14) 

Finally, we define n×n matrices and via 

(9.15) 

(9.16) 

Equation (9.11) can then be written as a matrix equation 

and 

(9.17) 

Proceeding one step further, we define the 1×2n matrix 
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(9.18) 

and the 2n×2n matrix 

(9.19) 

Then Eq. (9.17) becomes just 

(9.20) 

where l = 0, 1, ..., 2n!1. 
We hope that the reader now has a strong feeling of déjà vu. Equation 

(9.20) has precisely the same mathematical form as the matrix Eq. (8.59) of 
the previous chapter, when Eq. (8.59) is written for the case of source-free 
water and depth-independent IOP's. The last few equations should be 
compared with their counterparts in Chapter 8.  Now K(l) is a 2n×2n matrix 
(with n still unspecified) whose elements depend only on the constant IOP's 
and on the details of discretization of the angular variables (i.e., on the weights 
aj and on the expansion coefficients gl). In Chapter 8, K(l) was 2m×2m and 
depended only on the IOP's and on the details of discretization (i.e., on the 
choice of a quad-averaging scheme, which fixed the value of m). The 
similarities and differences in the and  matrices can be seen by comparing 
Eqs. (9.15) and (9.16) with Eqs. (8.42), and so on. 

Both quad averaging and the steps so far described in the development 
of the discrete-ordinates method are just two different ways of discretizing the 
direction variables in the RTE.  Both methods start from the same equation and 
will presumably arrive at the same answer, so it should come as no surprise 
that some of the intermediate equations bear a strong resemblance to each 
other1. Much of the remainder of this chapter will 

1Be forewarned that discrete-ordinates literature often applies the 
method to atmospheric problems with . positive upward, which reverses the 
directional meaning of the + and ! labels seen in Eq. (9.18). Also, Eq. 
(9.20) is usually seen in its transpose form where is a 
2n×1 array and K has the form 
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discuss the solutions of equations of the form of Eq. (9.20). We need not 
worry about whether the elements of K(l) came from quad averaging, from 
discrete ordinates, or from some other discretization scheme.  Before 
proceeding with that discussion, however, we must answer the question of how 
to choose the value of n in Eq. (9.1). 

Choosing the number of terms in the phase function expansion 

Equation (9.1) gives an exact representation of any if the right hand 
side is an infinite series.  In practice, we must pick a finite value of n that is 
large enough that the right hand side of Eq. (9.1) is acceptably close to the 
value of the actual phase function (R) at all scattering angles 0 # R # B. The 
choice of n is often made by numerical trial of error and, of course, 
"acceptably close" depends on the accuracy needed in the solution of the 
problem at hand. 

For phase functions that are not highly peaked, relatively few terms are 
necessary.  For example, Kattawar (1975) shows that the Henyey-Greenstein 
phase function HG of Eq. (3.34) has the expansion coefficients 

(9.21) 

where g is the asymmetry parameter (the average of cosR) defined in general 
in Eq. (3.8b) and evaluated for in Eq. (3.35). Since the Henyey-HG

Greenstein gk's depend on powers of g, the values of gk decrease quickly with 
increasing k for values of g less than roughly 0.8.  This is the case for, say, the 
atmospheric-haze phase function seen in Fig. 3.14, which has g = 0.66 [or g1 

= 0.71 and g2 = !0.76 when fit with a TTHG phase function as in Eq. (3.36)]. 
However, if the phase function is highly peaked, like or inp cirrus

Fig. 3.14, then many hundreds of terms may be required in Eq. (9.1) in order 
to achieve a satisfactory expansion of . This slow convergence is illustrated 
in Fig. 9.1 for the particle phase function of Table 3.10. Thep

where "T" denote the matrix transpose. The right hand side of Eq. (9.13) 
then corresponds to Ci,j, rather than to Cj,i. We have chosen the present 
form of Eq. (9.20) for consistency with Eq. (8.58). 
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Fig. 9.1.  Expansion of the particle phase function  of Table 3.10 in a series p

of Legendre polynomials according to Eq. (9.1).  The dotted lines give , andp

the solid lines give the right hand side of Eq. (9.1) for different numbers 2n of 
terms in the sum.  The ordinate axis refers to the curve for 2n = 50; subsequent 
curves are displaced by factors of 100 for clarity.  Gaps in the solid lines are 
regions where the sum is negative. 

figure shows the right hand side of Eq. (9.1) for 2n = 50, 100, 200 and 500 
total terms in the sum.  Gaps in the plotted curves are regions where the sum 
is negative; such poor approximations to  are unacceptable on physical 
grounds.  The expansion coefficients were computed by (double precision) 
numerical integration of Eq. (9.4). Even when 500 terms are included in the 

p expansion, the sum still differs noticeably from p(R) at very small and
very large R.  The convergence of the series (9.1) is very slow when x / cosR 
. 1 because of the highly peaked behavior of as x 6 1. The convergence p

is slow when x . !1 (i.e. when R . 180°) because the Legendre polynomials 
alternate in sign, as can be seen by setting x = !1 in Eq. (9.2). 
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If we must include hundreds of terms in (9.1), then the matrices in Eq. 
(9.20) become too large for efficient computation and, moreover, hundreds of 
such equations must be solved (one for each l value). The discrete-ordinates 
method then becomes computationally impracticable. 

Various tricks are used to circumvent the problems inherent in Eq. 
(9.1).  A common procedure is to regard radiance scattered by only a few 
degrees as being unscattered, in which case the actual phase function (R) can
be approximated as a Dirac delta function plus a less-peaked or "smoother" 
phase function that describes large-angle scattering.  For example, the Delta-M 
approximation of Wiscombe (1977) writes 

(9.22a) 

or equivalently 

(9.22b) 

where f is the fraction (0 # f # 1) of "unscattered" radiance, * is the Dirac delta 
*function of Eq. (1.15), and  is a "smooth" phase function that describes the 

scattered radiance.  The factor of 2 in the *-function term occurs because * is 
being used at the endpoint of an integration interval; it is a property of * that 

*If , , and * are each expanded in Legendre polynomials, then f and the 
*expansion coefficients gk 

* of can be determined from the expansion 
coefficients gk of  in such a manner that  and the right hand side of Eq. 
(9.22) agree for the first 2M terms of their Legendre polynomial expansions. 
The radiative transfer effects of small-angle scattering are then accounted for 
by analytical treatment of the *-function in the RTE (see problem 9.3), and the 

*large-angle scattering described by receives a numerical treatment. The 
resulting numerical equations corresponding to Eqs. (9.11) or (9.20) are then 
of order M in size, not of order n, where M << n. 

Approximations like Eq. (9.22) can yield very accurate computations 
of irradiance for small M. However, if the details of the forward-scattered 
radiance distribution are important, then approximations like Eq. (9.22) are 
inadequate and the exact must be used. 
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Completing the solution 

The mathematical form of Eq. (9.20) suggests that  behaves like an 
exponential function of .. Therefore, the next step of the discrete-ordinates 
method is to seek solutions of Eq. (9.20) that have the form 

(9.23) 

where G(l) is a 1×2n matrix for each l value. Substituting Eq. (9.23) into Eq. 
(9.20) gives a standard eigenvalue-eigenvector equation. 

(9.24) 

Because the matrix K is independent of depth, so are its eigenvalues 6 
and eigenvectors G. Moreover, since K is 2n×2n, there are 2n linearly 
independent eigenvalues and eigenvectors, which we label 6j and G , j = 1, 2,j

..., 2n. (Because of the structure of K, degenerate eigenvalues do not occur; 
see Section 9.4.)  The general solution of Eq. (9.20) is a linear combination of 
these eigenvectors: 

(9.25) 

Here the Aj are arbitrary constants, which are to be determined by the 
boundary conditions imposed in the particular problem at hand.  Note that 
although Eq. (9.23) is an exponential, the general solution (9.25) shows that

 is not an exponential:  it is a sum of exponentials that decay with depth 
at different rates. 

We shall not pursue the determination of the Aj, since we have now 
seen the essence of the discrete-ordinates method and, just as importantly, we 
have made a connection with the matrix equations of Chapter 8.  This 
connection will allow us to investigate Eq. (9.25) from a slightly different 
viewpoint, starting in the next section. 

Details of the remaining discrete ordinates calculations can be found, 
for example, in Stamnes, et al. (1988). That paper also shows how to include 
internal source terms.  Methods for handling layered media are described in Jin 
and Stamnes (1993).  Other important papers on discrete ordinates are found 
in Kattawar (1991).  The basic concepts of the method originated with Wick 
(1943) and Chandrasekhar (1960).  The mathematical nature of Eq. (9.25) as 
n becomes infinite can be treated with the singular 
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eigenfunction method, which is discussed, for example, in Case (1960), Case 
and Zweifel (1967), and Kuš�er and McCormick (1991). 

Strengths and weaknesses 

We can now summarize the strengths and weaknesses of the 
discrete-ordinates method. 

! It is a very efficient way to compute irradiances. Irradiances are 
computed from azimuthally integrated radiances, which correspond to 
the l = 0 case of Eqs. (9.6) or (9.20).  Thus, solutions need be 
computed only for l = 0 in order to compute irradiances. 

! Radiance distributions are easily computed at any depth in 
homogeneous water.  Because of the simple analytic depth dependence 
of  seen in Eq. (9.25), radiances are available at any depth . once 
the eigenvalue-eigenvector problem has been solved.  Thus the 
computational costs are independent of the water depth. 

! Radiances are computed in specific directions. This is in contrast to 
the directionally (quad) averaged radiance computed in Chapter 8. 
Discrete ordinates is an "n-stream" solution method, in the sense 
mentioned in Section 5.10. 

! The method becomes numerically inefficient if detailed radiance 
distributions are required for highly peaked phase functions. In this 

ncase, it may be impossible to circumvent the "large " requirements of 
the Legendre polynomial representation of . 

! The method becomes inefficient if the IOP's are depth dependent. If 
many homogeneous layers are required in order to approximate the 
depth behavior of the IOP's, then many eigenmatrix solutions are 
required.  In addition, the individual layer solutions must be coupled 
together in order to determine the Aj's of each layer. 

! It is difficult to include the effects of wind-blown air-water surfaces. 
This can be done in principle, but no computer codes incorporating 
random sea surfaces have been published. 
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9.2	 A General Matrix Formulation of the 
Local Interaction Principles 

In the previous section we encountered a matrix equation of the form 

(9.26) 

where we have dropped the l argument for brevity. Chapter 8 also produces 
such an equation in the case of source-free, homogeneous water.  We also 
recall from Eq. (8.61) that the fundamental solution M satisfies such an 
equation.  The mapping property of the fundamental solution gives the 
radiance amplitudes at depth . from the amplitudes at some other depth, say 
w: 

(9.27) 

[Recall Eq. (8.63) for source-free water.] 
In the discrete-ordinates method, we obtained a solution of Eq. (9.26) 

by assuming that  had an exponential form; 

(9.28) 

This assumption led to an eigenvalue-eigenvector equation for 6 and G. 
Comparing Eqs. (9.27) and (9.28) and noting that both and M satisfy Eq. 
(9.26) suggests that there is a connection between the fundamental solution M 
and the eigenstructures G and 6 of K. This comparison also suggests  that M 
behaves like an exponential function of .. 

We shall pursue these matters for the remainder of this chapter and, in 
so doing, we shall uncover results both philosophically profound and 
numerically useful.  These results have been developed over the years by 
various researchers.  Notable historical papers are those of Aronson (1972) and 
of Waterman (1981).  Plass, et al. (1973) give a detailed review of the earlier 
literature.  The treatment in this chapter follows unpublished notes of 
Preisendorfer, which are collected in Preisendorfer (1986). 

We first define a general eigenmatrix problem.  Recall that in Eq. 
(8.44) we defined arrays that were either 1×m if p = 1 and l = 0, or 
1×(m!1) otherwise.  In Eq. (9.14) we defined as being 1×n, or perhaps

1×M if the *-M phase function approximation is being used. Likewise, 

and
  are defined in Eq. (8.42) as being either m×m or (m!1)×(m!1) 
matrices, for l = 0 and l > 0, respectively.  Similar n×n or M×M matrices were 
defined in Eqs. (9.15) and (9.16). 
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Let us now define general 1×q arrays 

(9.29) 

and q×q matrices and . Here q can be m or m!1, n or M, depending on the 
particular origin of the arrays.  It is the general forms of , and that are 
important, not their size or detailed definitions.  We shall therefore omit any 
arguments like p or l, while retaining the depth argument .. With these 
definitions, the local interaction equations for source-free, homogeneous 
water can be written as 

(9.30) 

Note that and  are now independent of depth.  In matrix form, Eq. (9.30) 
reads 

or 

(9.31) 

In Eq. (9.31) we have defined the 1×2q array 

(9.32) 

and the 2q×2q local transfer matrix 

(9.33) 

We are considering here infinitely deep, source-free, homogeneous 
water bodies S[w,m], so that 0 # w # . # m # b = 4. In addition, we shall 
assume that we know the radiance amplitude  just below the air-water 
surface.  These assumptions will allow us to concentrate on the essential 
results, without carrying along the extra mathematical terms associated with 
internal sources, finite depths, or surface boundary conditions. 
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9.3	 Eigenstructures of the Local Transfer 
Matrix K 

We have now posed a 2q-dimensional matrix problem: find the 
solution  of Eq. (9.31).  Because Eq. (9.31) is a linear equation, there 
should exist a set of 2q distinct basis functions, such that the general solution 
of Eq. (9.31) can be written as a linear combination of the basis functions. 
Moreover, we already have observed in Eq. (9.25) that the general solution 
should behave with depth like a sum of exponentials. 

Natural basis functions for radiance amplitudes 

Based on the preceding comments, we postulate the existence of a set 
of 2q linearly independent basis functions of the form 

(9.34) 

where j = 1, ..., q. Here the are 2q distinct, dimensionless, real numbers. 
The  are dimensionless because we are working with dimensionless optical 
depths . and w. In homogeneous water, . = cz. Thus, if we wish to work with 
geometric depth z, we write the exponential in Eq. (9.34) as exp , 
where  has dimensions of m!1.  The are decay (or growth) 
constants associated with the basis functions . They should not be 
confused with the diffuse attenuation functions [Kd, K(2,N), etc], which can be 
thought of as decay constants for actual (measurable) irradiances or radiances. 
The basis functions will prove to be convenient mathematical constructions, 
but they are not observable; that is to say, the 's cannot be measured with 
a radiometric instrument.  McCormick and Højerslev (1994) have pointed out 
problems that can arise if the conceptually distinct 6's and K's are confused. 
As we shall see, however, the 6's and K's are related. 

Note from Eq. (9.34) that 

(9.35) 

We can collect these basis functions into arrays, just as in Eqs. (9.29) and 
(9.32): 

and 
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In addition, let us define the q×q diagonal matrices 

(9.36) 

and the 2q×2q diagonal matrix 

(9.37) 

where 0 is the q×q matrix of zeros.  With these definitions, Eq. (9.34) can be 
written 

(9.38) 
or 

(9.39) 

In such matrix equations, the exponential is defined by 

(9.40) 

where A is any square matrix.  Note also that 

(9.41) 

Likewise, Eq. (9.35) can be written 

(9.42) 

We next recall that by hypothesis the general solution of Eq. 
(9.31) can be written as a linear combination of the 2q basis functions : 

(9.43) 
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where u = 1, ..., q as in Eq. (9.29), and the  are coefficients that remain 
to be determined.  These coefficients can be placed in matrix form via 

Equation (9.43) then becomes 

In more compact form we can write 

(9.44) 

or 
(9.45) 

The  arrays are each q×q. q row 
vectors : 

into , and so on. 

They are formed by "stacking up" the 1×

Note that transforms Note also that the 
mapping F is independent of depth, even though it transforms the basis 
functions at depth . into the radiance amplitudes at depth ., for any .. 

Transformation (9.45) can be postulated to go in the reverse direction, 
i.e., from to , in which case we can write 

(9.46) 

provided that  exists. Reversing the steps leading from Eq. (9.43), we can 
decompose Eq. (9.46) to obtain 

(9.47) 

or 
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(9.48) 

or finally 

(9.49) 

where j = 1, ..., q. Note, however, the difference in running index variables in 
Eq. (9.49) vs. Eq. (9.43). 

The eigenstructure equation 

Results (9.34) to (9.49) have all been obtained by hypothesis and 
definition.  We still do not know how to compute 6, B, or F. However, 
combining Eqs. (9.42) and (9.46) gives 

On the other hand, taking the . derivative of Eq. (9.46) and using (9.31) gives 

/d.Equating these two forms of dB  and noting that is arbitrary gives the 
all-important equation 

(9.50) 

This equation shows that E and 6 are the eigenstructures, that is the 
eigenvectors and eigenvalues, of K.  If we view the columns of E as 2q×1 
vectors 

and recall that 6 is diagonal, Eq. (9.50) can be written in the customary 
eigenvector-eigenvalue form 

(9.51) 
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Thus the jth eigenvector of K forms the jth column of E, and the associated jth 

eigenvalue is the corresponding element 6jj of 6. This is the first major result 
of this section. 

Another way to view Eq. (9.50) is to write it as 

(9.52) 

We then see that is the matrix that diagonalizes the local transfer 
matrix K. 

Eigenrepresentation of the fundamental solution 

The connection between the fundamental solution M(w,.) and the 
eigenstructures of K is now easily established. The mapping property (9.27) 
can be combined with the basis representation (9.45) and Eq. (9.39) to give 

Now by Eq. (9.46) evaluated at . = w, we can replace B(w) in the previous 

equation by to get 

Since  is arbitrary, we immediately conclude that 

(9.53) 

Equation (9.53) shows how the fundamental solution can be obtained from the 
eigenstructures of K. This is the second major result of this section. 

We can reduce Eq. (9.53) even further by expanding the exponential 
and using Eq. (9.52): 
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(9.54) 

We thus have an elegant representation of the fundamental solution as an 
exponential of the local transfer matrix K. Note that for . = w we get just 

(9.55) 

This is precisely the initial condition (8.62) that we used to obtain the 
fundamental solution M(w,.) by depth integration of the differential equation 
system (8.61), 

(9.56) 

In the general case of depth-dependent IOP's, i.e., when K is a function of ., 
integration of Eq. (9.56) is the most efficient way to obtain M(w,.). In the 
special case of constant K, we also can obtain M(w,.) simply by evaluating 
exponentials. 

Equation (9.54) is convenient for theoretical discussions (see, for 
example, problem 9.2).  However, in numerical computations, Eq. (9.53) is 
more convenient than (9.54) because the matrix 6 in the exponential is 
diagonal. For diagonal matrices (only!) we have 

This result makes the numerical evaluation of Eq. (9.53) much easier than the 
evaluation of Eq. (9.54), which in general can be quite difficult. 

9.4 Properties of the Eigenstructures of K 

The symmetries (5.7) of the scattering phase function are responsible 
for the block-antisymmetric form of the local transfer matrix K. This special 
structure of K in turn leads to certain symmetries in its eigenvectors ej and 
eigenvalues 6j, which we now investigate. 
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Decomposing the radiances into downward (+) upward (!) parts 
already has led us to write the 2q×2q matrix of eigenvectors, E, as [recall Eqs. 
(9.47) and (9.51)] 

(9.57) 

This equation suggests that we partition each of the 2q×1 eigenvectors ej into 
two q×1 vectors according to the patterns 

(9.58a) 

for j = 1, ..., q; and 

(9.58a) 

for j = q+1, ..., 2q. Here the are each qx1 arrays. 

Reversal property of the eigenstructures 

Now suppose that ej is a 2q×1 vector of the form of Eq. (9.58a).  The 
reverse of ej is defined as 

(9.59) 

Here  is the 2q×2q reversal matrix. Observe by straightforward 

(9.60) 

(9.61) 

(9.62) 

and 

computation that 

which implies that 
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Now let ej be the eigenvector of K associated with eigenvalue 6j, j = 
1, ..., q. Then by definition 

Multiplying this equation on the left by  and using Eq. (9.60) gives 

which by Eqs. (9.59) and (9.62) reduces to 

(9.63) 

Thus we conclude that if ej and 6j are an eigenstructure of K, then so are 
and !6j. From this, we see that the eigenvalues of K come in signed pairs, 
±6j, j =1, ..., q. 

If we re-index the eigenvalues so that 6j+q = !6j, j = 1, ..., q, then 
, j = 1, ..., q. Hence, it follows that in Eq. (9.58) we have 

(9.64) 

We can therefore simplify the notation of Eq. (9.57) to 

(9.65) 

A corresponding notation, , can be used
in Eq. (9.44). 

Uniqueness of the eigenstructures 

We have been assuming that the eigenvectors of K are linearly 
independent.  Simple physical arguments convince us that our assumption is 
indeed justified. 

Without loss of generality, we can arrange the non-negative 
eigenvalues 6j, j = 1, ..., q, into ascending order: 

Observations show that in optically deep, source-free, homogeneous waters 
illuminated from the sky, the radiance eventually decays exponentially with 
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increasing depth.  This implies that 61 must be positive:  61 # 0 would imply 
that the radiance amplitude associated with 61 via Eqs. (9.34) and (9.45) would 
not decay with depth, and hence neither would the radiance. 

We next observe that downwelling radiance near the surface [for 
example, , in quad-averaged notation] has q degrees of 
freedom.  For example, as the sun rises in the sky, the radiance in each u-quad 
changes, if all else is held constant.  Hence, the full q-dimensionality of the 
associated amplitude u = 1, ..., q, is required to determine the 
downwelling radiance.  This implies that the eigenvalues 6j, j = 1, ..., q are all 
distinct. We therefore conclude that 

The pairwise distinctness of the eigenvalues implies the linear independence 
of the associated eigenvectors ej, j = 1, ..., 2q. The linear independence of the 
eigenvectors forming E in turn guarantees us that  exists, as was 
assumed in writing Eq. (9.52). 

Indeed, the decomposition of the radiance into downwelling and 
upwelling parts, in combination with the above physical arguments, implies 
that the sets of vectors and  are each linearly 
independent.  This guarantees us that and each exist.  This last 
result will prove useful below. 

Reduction of the eigenmatrix order 

The eigenmatrix symmetries seen in Eq. (9.64) yield an important 
reduction in the size of the eigenmatrix problem that must be solved in order 
to determine the eigenstructures of K.  Recalling Eq. (9.64), we can write the 
2qx2q eigenmatrix equation as 

Expanding Eq. (9.66) gives 

(9.66) 

Adding and subtracting these two equations gives 

(9.67a) 
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(9.67b) 

Solving Eq. (9.67a) for  and substituting the result into Eq. (9.67b) 
gives the q×q eigenmatrix equation 

(9.68) 

We can solve this q-dimensional eigenstructure equation in order to determine 
its eigenvectors  and associated eigenvalues , j = 1, ..., q. Equation 
(9.67a) then gives us . Adding and subtracting and , 
finally yields and , respectively.

The structure of the 2q×2q system matrix K therefore allows us to 
determine its eigenvectors and eigenvalues from the eigenstructures of the q×q 
matrix (J!D)(J+D). This reduction from a 2q- to a q-dimensional problem 
represents a significant numerical savings, because the computational costs of 
finding eigenstructures are roughly proportional to the cube of the matrix 
order. 

9.5	 Radiance Reflectance of an Infinitely Deep 
Water Body 

Equation (8.56) expresses the spectral form of the bottom boundary 
condition (8.11) for a natural water body illuminated only from above: 

(9.69) 

where we have momentarily dropped the p and l indices seen in Eq. (8.55). 
We now have the tools necessary to compute  for a bottom boundary 
S[m,b] = S[m,4] that consists of an infinitely deep layer of homogeneous, 
source-free water.  Such a bottom boundary is usually a good model of the 
deep ocean below the maximum depth m of interest. 

In order to evaluate , let us first recall that Eq. (9.69) is just a 
special case of the downward global interaction principles 

(9.70) 

written for slab S[m,b]; recall Eqs. (8.70), (7.47) and (7.48). Comparing 
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Eqs. (9.69) and (9.70) shows that  is the same quantity as R(m,b). 
Moreover, we learned in Eq. (7.51) how to evaluate the standard operators 
T(b,m), R(m,b), etc. in terms of the fundamental solution M(m,b), which we 
once again partition as 

(9.71) 

The  are now q×q matrices. 
case, we now have 

(9.72) 

matrices in terms of the 
K. 

In parallel to Eq. (7.51) in the two-flow 

Equation (9.53) shows us how to write the
eigenstructures of the local transfer matrix Expanding Eq. (9.53) as 

gives 

(9.73a) 

(9.73b) 

(9.73c) 

(9.73d) 

Equations (9.73a) and (9.73b) allow Eq. (9.72) to be written as 

(9.74) 

Now, let  denote the spectral form of the radiance reflectance of an 
infinitely thick slab S[m,b] = S[m,4], that is 



455 9.5 Radiance Reflectance of Infinitely Deep Water 

We can explicitly evaluate this limit using Eq. (9.74), since the eigenstructures 
, and 6 are all independent of depth.  Let us rewrite Eq. (9.74) as 

(9.75) 

Here we have repeatedly used the identity , where A and B 
are any two invertible matrices. 

We now take the limit of Eq. (9.75) as b 6 4. The matrix elements in 
the second terms in each of the square brackets in Eq. (9.75) approach zero at 
least as rapidly as 

where we recall that 0 < 61 < 6i, 2 # i # q. Thus Eq. (9.75) reduces to 

or 

(9.76) 

This very simple result shows how to determine the bottom boundary spectral 
reflectance from the eigenvectors of K. 

Application to the quad-averaged 

bottom boundary condition '' 

In this chapter we have been omitting the p and l indices in various 
quantities, for purposes of simplicity of notation.  We now pause to consider 
the details of the use of Eq. (9.76) in the context of the quad-averaged 
equations of Chapter 8. 

We first recall from Eq. (8.42) that and are m×m matrices if l = 
0, and (m!1)×(m!1) matrices if l = 1, 2, ..., n. In Chapter 8 we were able to 
gloss over the different sizes of the and  arrays simply by appending a last 
row and last column of zeros to and  when l > 0, and by appending zero 
elements to the amplitude array when l � 0 or when l = 0 and p = 2; 
recall Eqs. (8.44) and (8.46). However, when using 
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and  to form a local transfer matrix K for homogeneous water, we must 
use the properly dimensioned and , because a last row or column of zeros 
would make K singular.  We therefore note that the local transfer matrix K(l) 
is 2m×2m if l = 0, and 2(m!1)×2(m!1) if l � 0. This means that E+ and E! are 
m×m if l = 0, and (m!1)×(m!1) if l � 0. 

To be specific, then,  is defined as follows: 
for l = 0: 

is m×m 

by Eq. (8.57b) 

for l � 0: 

is (m!1)×(m!1) 

if l = 1, 2, ..., n!1 

if l = n, by Eq. (8.57b). 

In contrast to the case of a Lambertian reflector, the infinite slab has
 non-zero when l > 0. It is therefore necessary to set up and solve the 

eigenmatrix equation 

for each 	l-mode. This is computationally quite reasonable to do.  The
 so obtained are then ready for use in Eq. (8.94) as initial conditions 

for the Riccati equation integrations. 
Should we wish to recover the actual quad-averaged radiance 

reflectances of an infinitely deep water body, we return to Eq. (8.54): 

The matrix elements  are extracted from the arrays by 
using Eq. (8.57). 

Note, that this r(m,4) is the reflectance of a bare slab S[m,4]; no air-
water boundary effects are included.  However, the reader who has mastered 
the concepts of Chapter 7 can easily show (see problem 9.5) that the 
reflectance of the entire water body, including effects of the air-water surface 
S[a,w], is 
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(9.77) 

Here we have divided the water body into the surface plus the water: S[a,4] 
= S[a,w] c S[w,4], where m = w in the computation of . The four surface 
transfer matrices are computable by the methods of Chapter 4. 

9.6 The Asymptotic Radiance Distribution 

Observations show that deep in homogeneous, source-free waters, 
radiance distributions approach a shape L4(2) that depends only as the IOP's. 
Moreover, the radiance distribution at depth decays in magnitude exactly 
exponentially with a decay rate k4 that, once again, depends only on the IOP's. 
We already have mentioned this fact in Section 5.8; recall Eq. (5.34).  

Hypotheses regarding the existence of such an asymptotic radiance 
distribution, or characteristic diffuse light field, can be traced back at least to 
Shuleikin (1933) and Whitney (1941).  Preisendorfer (1959; see also H.O. V, 
Section 10.5) took the first careful look at the mathematical requirements for 
the existence of an asymptotic radiance distribution.  Højerslev and Zaneveld 
(1977) gave the first rigorous mathematical proof that L4(2) and k4 exist for 
any physically realistic phase function and single-scattering albedo [see 
Supplementary Note 12]. The eigenmatrix formalism gives us a 
straightforward means to compute the shape and decay rate of the asymptotic 
radiance distribution for a given set of IOP's. 

Existence and computation of the 

asymptotic radiance distribution 

Let us begin with the mapping property (9.27) and expand the 
fundamental solution M(w,.) as in Eq. (9.71): 

(9.78) 

Equation (9.73) gives the  in terms of the eigenstructures of K. 
Substituting Eq. (9.73) into (9.78), carrying out the matrix multiplications, and 
grouping terms gives 
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(9.79) 

where a+(w) and a!(w) are 1×q arrays defined by 

(9.80a) 

(9.80b) 

We can think of a±(w) as being initial conditions at depth w, which are to be 
used in determining the radiance amplitudes  at any depth .. As we saw 
illustrated in Fig. (5.3), radiance can increase or decrease with depth near the 
water surface, hence the need for both growing and decaying exponentials in 
Eq. (9.79). 

Now let us examine the behavior of Eq. (9.79) as . 6 4. We have just 
seen that Eq. (9.76) relates and in the limit . 6 4, 

and we recall from Eq. (9.69) that  simply reflects downwelling into 
upwelling radiance: 

(Here we regard S[w,4] as the region described by .) 
At great depths, Eq. (9.80a) then reduces to1 

whereas Eq. (9.80b) becomes 

Radiance amplitudes at great depth therefore have the form 

(9.81) 

1The a±(w) depend implicitly on ., as can be seen for example by writing
 before letting . 6 4 to get R(w,.) 6 

, T(.,w) 6 0. 
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Equation (9.81) is the mathematical statement that at sufficiently large depths, 
the radiance always decreases with increasing depth. 

Let us now remember that an equation like (9.81) holds for each l-
mode, l = 0, 1, ..., n in the radiance amplitude decomposition.  We therefore 
should index each quantity by l, i.e., , and . For each l value 
we always order the eigenvalues as 0 < 61(l) < 62(l) <... < 6q(l). Now it also 
turns out that 61(0) < 61(l) for all l = 1, ..., n. Physically this reflects the fact 
that asymmetries and fine details of the radiance distribution near the surface 
disappear with depth more quickly than the 0-mode, or N-averaged, radiance. 
Thus in Eq. (9.81) the slowest decaying matrix elements are those associated 
with . Equation (9.81) written in component from for l = 
0 is 

for u = 1, 2, ..., q; q = m in the quad-averaged formalism of Chapter 8.  If we 
multiply each side of this equation by  and take the limit as 
. 6 4, all of the terms for v > 1 will go to zero because 6v(0) > 61(0) for v > 1. 
We thus have left just 

(9.82) 

Now define the 1x2q array 

where 

This L4, or any scalar multiple thereof, is called the asymptotic radiance 
distribution.  Note that L4 is defined by the l = 0 cosine radiance amplitudes; 
recall that the sine amplitudes are always zero for l = 0 (hence we can omit the 
p = 1 or 2 index in the above equations).  Because we are dealing with l = 0 
cosine amplitudes, the amplitudes are just the azimuthally averaged radiances 
for the various : -bands. Thus L4 depends only on the polar angle 2 (or :) andu

not on the azimuthal angle N. 
Equation (9.82) shows how L4 is easily obtained from the 

eigenstructures of K(0). After finding the eigenvectors E, we compute F = E!1, 
and then pick off the elements of the first row of F, where F is partitioned in 
the manner seen for E in Eq. (9.65). Since only the shape of L4 is relevant, it 
is customary to normalize L4 so that its largest element is 
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one. In natural waters, this is always the element, which gives the 
relative amount of radiance heading into the nadir polar cap.  Note that since 
L4 is determined only by the IOP's contained in K(0), the asymptotic radiance 
distribution is itself an inherent optical property. 

We also have just seen that the rate of decay with optical depth of the 
asymptotic radiance distribution is . This decay rate can be 
expressed in dimensional form as 

(9.83) 

where c is the beam attenuation coefficient. 
Since each u-component (or direction 2) of in Eq. (9.82) decays 

at the same rate, we see that the radiance diffuse attenuation functions 
K(z;2,N), which generally differ near the surface, all approach the same value 
k4 at great depth. This is the connection between diffuse attenuation functions 
and basis-function decay constants alluded to at the beginning of Section 9.3. 

Asymptotic behavior of apparent optical properties 

It should be noted that Eq. (9.82) shows that the directional and depth 
dependencies of the radiance distribution decouple at great depths. That is to 
say, 

(9.84) 

This in turn implies that all irradiances decay in the asymptotic regime at the 
same rate as the radiance. For example, 

(9.85) 

We can compute corresponding values for Eu, Eod, and E . Clearly, each ofou

these irradiances has the same asymptotic K-function, namely k4. 
Using these asymptotic irradiances, we can compute asymptotic values 

for any apparent optical property. For example, we have 
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(9.86) 

Note that any normalization factor in L4(2) divides out when computing 
AOP's. 

Some of the relations among AOP's take on particularly simple forms 
in the asymptotic regime.  Recall, for example, Eq. (5.68): 

which holds for any depth in source-free (but possibly inhomogeneous) water. 
At great depth, Kd = K  = k4, and this equation simplifies to just u

Because the asymptotic radiance L4 is determined solely by the IOP's, 
it follows that any quantity computed from L4 is also in IOP.  We therefore see 
that the apparent optical properties all become inherent optical properties in 
the asymptotic regime. The K's, 's, R and their ilk, which are influenced by 
boundary conditions near the water surface, all approach values at depth that 
are independent of the boundary conditions. 

Dependence of asymptotic values on 

inherent optical properties 

The two asymptotic properties L4 and 64 are determined solely by the 
IOP's T  and . Numerical solution of the l = 0 eigenmatrix equation as o

described above enables us to investigate the dependencies of L4 and 64 on the 
IOP's. 

Figure 9.2 shows how 64 depends on To for three phase functions. The 
dotted line is for the pure water phase function w of Eq. (3.30); the dashed 
line is for the Henyey-Greenstein phase function HG of Eq. (3.34) with an 

gasymmetry parameter  = 0.7; and the solid line is for the particle phase 
function  of Table 3.10.  The squares show experimental data taken in p

laboratory suspensions containing milk (Timofeeva and Gorobetz, 1967).  The 
fat globules in milk are large (>>8), efficient scatterers, which explains the 
similarity between the milk solution and particle-laden natural waters. 
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64 on ToFig. 9.2.  Dependence of  for selected phase functions.  The solid line 
is for , the dashed line is for HG, and the dotted line is for , as discussedp w

in the text. The squares are the data of Timofeeva and Gorobetz (1967). 

Figure 9.3 shows the shape of L4(2) as a function of To for the particle 
phase function ; all values are normalized to one. The viewing angle 2  isp v

the angle in which an underwater observer would look in order to see photons 
traveling in direction 2 = 180°!2 ; 2v and 2 are both measured from the +z, orv

nadir, direction.  Thus, 2v = 180° corresponds to looking toward the zenith and 
seeing photons heading straight down (2=0). As we would expect, in highly 
scattering water (large To) the upwelling radiance is relatively much greater 
than in weakly scattering water (small To). Corresponding curves for the 
Rayleigh phase function can be seen in Kattawar and Plass (1976).  Prieur and 
Morel (1971) show such curves as a function of the relative contributions by 
molecular and particle scattering, i.e., for phase functions that are in between 

and .w p

Figure 9.4 shows the asymptotic mean cosines and irradiance 
reflectance computed as in Eqs. (9.85) and (9.86).  The quantities are displayed 
on the same format used in Fig. 9.2:  a solid line for , a dashed line forp HG, 
and a dotted line for . We shall leave it as an exercise to explain the w

behavior of the curves in Fig. 9.4 in terms of the shapes of the phase functions 
and of the relative contributions of absorption and scattering to the total 
attenuation. 
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Fig. 9.3.  Shape of the asymptotic radiance distribution L4 as a function of To, 
for the particle phase function . The viewing angle 2  is 180°!2, asp v

discussed in the text. 

Rate of approach to asymptotic values 

We have seen that asymptotic values are determined solely by the 
IOP's of a homogeneous water body.  However, in our theoretical discussions 
above we have said nothing about how quickly a given quantity approaches its 
asymptotic value.  The reason is that the rate of approach to an asymptotic 
value depends both on the IOP's and on the boundary conditions. 

We can best illustrate this point with a few numerically generated 
examples.  In Section 11.1 we shall examine predictions made by various 
Monte Carlo, invariant imbedding, and discrete-ordinates numerical models. 
In so doing, we shall convince ourselves (as is done in Mobley, et al., 1993) 
that the models all correctly compute underwater radiance distributions, given 
the IOP's, sea state, and incident sky radiance.  For the moment, though, let us 
assume that the algorithm developed in Chapter 8 correctly computes 
L(.;2,N), from which 
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Fig. 9.4.  Asymptotic values of the mean cosines and of the irradiance 
reflectance, as a function of To, for various phase functions.  The solid, dashed, 
and dotted lines correspond to those of Fig. 9.2. 

and the various irradiance K-functions can be computed.  Note that K(.;2,N) 
is a dimensionless "optical depth K-function;" K(z;2,N) is the customary 
dimensional K-function with units of m!1. 

We consider first a homogeneous, source-free, infinitely deep water 
body described by the particle phase function of Figure 3.13 and byp

T  = 0.8. Table 3.11 shows that such water might be characteristic of a turbid o

harbor at green wavelengths.  The air-water surface is taken to be level.  The 
incident radiance is generated by a point sun at a zenith angle of 2  = 57°; thes

sky is otherwise black. 
The algorithm of Figs. 8.1 and 8.2 was used to compute L(.;2,N) 

throughout the region S[w,m] = S[0,50]. Figure 9.5(a) shows the depth 
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behavior of various K-functions computed from L(.;2,N).  The solid lines are 
Kd, Ku, and Ko; the two dash-dot lines are radiance K(2,N)'s for photons 
heading in the nadir and zenith directions [i.e., K(0°,@) and K(180°,@)]; and the 
three dash-dot-dot-dot lines are radiance K's for horizontal directions toward, 
at right angles to, and away from the sun, i.e., for (2,N) = (90°,0°), (90°,90°) 
and (90°,180°). The K-functions vary greatly near the water surface.  Even at 
. = 5 optical depths the spread is from K(0°,@) = 0.127 to K(90°,180°) = 0.402. 
However, by . = 50 the K's have all converged to within ±0.2% of the 
asymptotic value k4 = 0.310, which was computed by the eigenmatrix method 
described above. 

Figure 9.5(b) shows the results if we repeat the above numerical 
simulation using the cardioidal distribution of problem 1.5 for the incident sky 
radiance.  We now see that the various K's approach k4 much more quickly 
than in Fig. 9.5(a):  all K's are now within 0.2% of k4 by 15 optical depths. 
The reason for the difference is that the cardioidal sky radiance distribution 
gives an L(w;2,N) that is much closer in shape to L4(2) than does the 
collimated radiance of Fig. 9.5(a). Thus, L(w;2,N) is already well on its way 
to L4(2), and less depth is required to finish getting "near" to the asymptotic 
distribution.  Indeed, we can imaging choosing just the right incident sky 
radiance L+(a;2,N) so that after transmission through the surface and solution 
of the RTE, we would find L(w;2,N) = L4(2).  In this case, all quantities would 
have their asymptotic values throughout the water column. 

The rate of approach to asymptotic values also depends on the IOP's. 
In Fig. 9.6(a) we show exactly the same situation as in Fig. 9.5(a), except that 
now T  = 0.2. Tables 3.5 and 3.11 show that this To corresponds to very clear o

ocean water at blue wavelengths.  Figure 9.6(b) likewise corresponds to Fig. 
9.5(b). 

Comparison of Figs. 9.5 and 9.6 shows that in the "high absorption" 
(T  = 0.2) case, the K's approach their asymptotic value, k4 = 0.874, more o

slowly than in the "high scattering" (To = 0.8) case.  The physical reason is 
that scattering is required to redirect the initial photon directions towards the 
asymptotic angular distribution. In highly scattering waters this redirection 
is accomplished relatively quickly.  In highly absorbing waters, the light field 
rapidly decreases in magnitude with depth because of absorption, but it 
requires a relatively long time for the angular photon distribution to be 
changed by scattering.  The concept of an asymptotic distribution breaks down 
for To = 0, the case of absorption only; hence k4 is undefined for T  = 0. In o

Section 11.2 we shall look at the radiance distributions from which Figs. 9.5(a) 
and 9.5(b) were produced. 
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Fig. 9.5.  Depth dependence of selected K-functions for highly scattering water 
(To = 0.8) and different sky lighting conditions.  Panel (a) is for the sun at a 
zenith angle of 57° in a black sky; panel (b) is for a cardioidal sky radiance 
distribution. 
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Fig. 9.6.  Depth dependence of selected K-functions in highly absorbing water 
(To = 0.2); otherwise the parameters are the same as for Fig. 9.5. 
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Mathematically, the rate of approach to L4 is governed both by the 
remaining eigenvalues 62, 63, ..., 6q and by the initial conditions a±(w), as 
seen in Eq. (9.79).  If 62 is close to 61 = 64, and if the corresponding 
eigenvector is strongly "excited" by the incident radiance [i.e., if the 
eigenvector has a large initial value ], then the approach to the
asymptotic value will be slow.  These matters are discussed in some detail 
in McCormick (1992a). 

An integral equation for the asymptotic radiance 

If we return to the RTE for homogeneous, source-free water, Eq. 
(9.7), and assume that the radiance has the form seen in Eq. (9.84), we 
immediately obtain 

(9.87) 

This equation is an 4(: 64integral equation for the shape L ) and decay rate 
of the asymptotic radiance distribution. Given the IOP's T  and , we cano

solve Eq. (9.87) for the corresponding L4(:) and 64. Another form of Eq. 
(9.87), often seen in the literature, is 

where the redistribution function h(:N,:) is the azimuthally averaged phase 
function (van de Hulst, 1980) 

For the case of isotropic scattering, = 1/4B, the solution of Eq. 
(9.87) has the simple form 

(9.88), 

where we have normalized L4(:) to 1 at : = 1 (or 2 = 0, the nadir 
direction); recall Eq. (5.34).  Note that this L4(:) has the shape of an ellipse 
whose major axis is oriented vertically.  The corresponding value of 64 is 
the solution of the transcendental equation 
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as can be seen by substitution of Eq. (9.88) into Eq. (9.87). 
Kattawar and Plass (1976) obtained an analytic solution of Eq. 

(9.87) for the Rayleigh phase function . 
However, for other phase functions, in particular for those like ofp

Table 3.10, the solution of Eq. (9.87) must be obtained numerically. 
Solving the integral Eq. (9.87) is mathematically equivalent to solving the 
eigenmatrix equation as described above. 

Equation (9.87) has been used in several studies of asymptotic light 
fields; see in particular Prieur and Morel (1971) and Kattawar and Plass 
(1976). 

9.7 Problems 

9.1 Expand the Rayleigh phase function 

in a series of Legendre polynomials. 

9.2 Verify the orthogonality relation (9.3) by explicit calculation using P3 

and P4. 

9.3 Substitute the Delta-M approximation (9.22) into the RTE (9.7) and 
*show that the resulting equation involving has the same form as Eq. 

(9.7), if the optical depth and the albedo of single scattering are redefined as 

and 

respectively. 

9.4 Suppose that the optical depths . and w are very close together, i.e. . 
! w << 1. Then the exponential in Eq. (9.54) can be approximated by 
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Use this approximation along with Eq. (9.71) and the matrix equivalent of 
Eq. (7.51) to show that, to first order in . ! w, 

These relations highlight the physical interpretations of and as 
representing (in spectral form) the transmittance and reflectance of thin 
slabs of water. 

9.5 Partition a homogeneous, source-free water body into the surface plus 
the water: S[a,b] = S[a,w] c S[w,b]. Then formulate appropriate global 
interaction principles for depths (a,w,b), and use the associated union and 
imbed rules, as in Chapter 7, to derive Eq. (9.77).  How does this result 
compare with that obtained in problem 4.5? 

9.6 Qualitatively explain the shapes of the asymptotic values of the AOP's 
seen in Fig. 9.4 in terms of the shapes of the phase functions and the values 
of T .o

9.7 Consider Fig. 9.5, which shows K-functions in terms of optical depth . 
for T  = 0.8. To what geometric depth z does . = 50 correspond, if theo

turbid water has a = 0.4 m!1 and b = 1.6 m!1? What is the dimensional k4 

value? Repeat this problem for the clear-water case of Fig. 9.6, assuming 
that a = 0.04 m!1 and b = 0.01 m!1. 

9.8 Suppose that we have isotropic scattering, = 1/4B, and T  = 0.7.o

Show by explicit calculation using Eq. (9.86) that the corresponding 
asymptotic radiance distribution has the form 

where 64 . 0.8286. 

9.9 Develop an eigenmatrix theory for irradiances in source-free, 
homogeneous water. Start with the source-free, depth-independent version 
of Eq. (7.37), 
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where now K is a 2×2 matrix of the form 

The J's and D's are now numbers with dimensions of m!1, which are 
assumed known. 

Parallel the developments in Sections 9.2-9.6, noting where the 
results developed at the radiance level also hold for irradiances and where 
they do not, because K is no longer anti-symmetric (Dud � Ddu), or because 
J � Jdd. By explicit calculation, find the two eigenvectors e± anduu 

dimensional eigenvalues k± of K in terms of the J's and D's. Do k± still have 
the form k± = ±k? Express R(4) and the asymptotic decay rate k4 = !k! in 
terms of the J's and D's. 

When you are done developing your theory, you can check it against 
the following "observations" (which were numerically generated for a 
natural water body at green wavelengths): 

where C is an arbitrary constant. 


	Button5: 
	Button6: 


