
Chapter 10


Inverse Methods


All of the previous chapters have been concerned with the forward or 
direct problem of hydrologic optics. The rules of the game were simple:  given 
the inherent optical properties of the water and the physical properties of the 
boundaries, find the radiance distribution throughout the water. The 
development of the governing equations in the first five chapters, the 
discussions of numerical solution methods in the previous four chapters, and 
the example solutions yet to come in Chapter 11 convince us that we can 
readily compute radiance distributions in natural waters.  Indeed, the only 
limits on the accuracy of computed radiances are the accuracy with which we 
specify the IOP's and the boundary conditions, and the amount of computer 
time we wish to devote to the numerical solutions.  In this sense the direct 
problem of computing radiances can be regarded as solved. 

We now turn our attention to the inverse problem of hydrologic optics: 
given radiometric measurements of underwater light fields, determine the 
inherent optical properties of the water.  We shall soon learn that this is very 
much an unsolved problem. Both conceptual and practical limits are 
encountered in inverse problems. 

10.1 Inverse Problems 

The first problem we encounter is uniqueness of the solution. Consider 
the following situation.  A body of water with a particular set of IOP's and 
certain boundary conditions has an underwater radiance distribution 

.  If the boundary conditions now change, perhaps because the 
wind ruffles the sea surface or the sun moves, there will be a different radiance 
distribution  within the water, even though the IOP's remain 
unchanged.  Can we correctly recover the same set of IOP's from the two 
different light fields?  Can we distinguish between  because of a 
change in boundary conditions, as opposed to  because of a change in 
IOP's?  If the same set of IOP's can yield different radiance distributions, as we 
just saw, we are led to ask if two different sets of IOP's and boundary 
conditions can lead to the same radiance distribution.  In other words, is there 
even in principle a unique solution to the inverse problem stated above? 
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Another problem often encountered with inverse solutions is the 
stability of the solution, or its sensitivity to errors in the measured radiometric 
variables.  In direct problems we usually find that a small error (say 5%) in the 
IOP's leads to a correspondingly small error in the computed radiance.  With 
inverse problems we often find that small errors in the measured radiometric 
quantities lead to large errors, or even unphysical results, in the retrieved 
IOP's.  Such extreme sensitivity of the inversion scheme to small errors in the 
input data often renders inversion algorithms useless, even though they appear 
in principle to be quite elegant and satisfactory. 

From a practical standpoint, if we have to measure the entire radiance 
distribution throughout the water body (perhaps with high accuracy), we 
probably could measure the IOP's themselves just as easily.  An inverse 
method is useful only when it saves us time, money, or effort.  What would be 
of real value is a recovery of the IOP's from, say, easily measured irradiances. 
We already have seen one example of this in Gershun's law, Eq. (5.37), which 
(in principle, at least) allows us to recover the absorption coefficient a from 
measured values of the plane and scalar irradiances, if there are no internal 
sources present.  We thus ask, for example, what additional measurements 
must be made in order to recover both the absorption and the scattering 
coefficients, a and b, or perhaps both a and $(R). It is problems like this to 
which we now turn our attention. 

Classification of inverse problems 

There are many kinds of inverse problems.  For example, there are 
medium characterization problems, for which the goal is to obtain information 
about the IOP's of the medium, which in our case is the water body with all of 
its constituents. This is the type of problem that we consider in this chapter. 
There are also hidden-object characterization problems, for which the goal is 
to detect or obtain information about an object imbedded within the medium, 
for example a submerged submarine.  We shall not discuss this type of 
problem.  Inverse problems may use optical measurements made in situ; such 
problems are discussed in Sections 10.2-10.4.  Remote sensing uses 
measurements made outside the medium, typically from a satellite or aircraft. 
We discuss remote sensing in Section 10.5. 

Another type of inverse problem seeks to determine the properties of 
individual particles from light scattered by single particles.  In such problems 
we usually start with considerable knowledge about the particles (for example, 
the particles are spherical and have a known radius), and we  
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seek to determine another specific bit of information (such as the particle index 
of refraction).  The associated inversion algorithms usually assume that the 
detected light has been singly scattered.  Even these highly constrained 
problems can be very difficult. 

Many researchers are actively addressing such problems because of 
their frequent occurrence in science and industry.  We shall not discuss these 
"individual-particle" inverse problems.  The state of the art can be seen in a 
recent special issue of Applied Optics (Hirleman and Bohren, 1991). In the 
ocean, there is no escaping multiple scattering, which greatly complicates the 
problem. 

The solutions to inverse problems fall into two categories:  explicit and 
implicit. Explicit solutions are formulas that give the desired IOP's as 
functions of measured radiometric quantities.  The simplest example is 
Gershun's law when solved for the absorption in terms of the irradiances.  Such 
solutions are rare.  Implicit solutions are obtained by solving a sequence of 
direct problems.  In crude form, we can imaging having a measured radiance 
distribution.  We then solve direct problems to predict the radiance for each of 
many different sets of IOP's.  Each predicted radiance is compared with the 
measured radiance.  The IOP's associated with the predicted radiance that most 
closely matches the measured radiance are then taken to be the solution of the 
inverse problem.  We shall see a simple example of this process in Section 
11.1.  Such a plan of attack can be efficient if we have a rational way of 
changing the IOP's from one direct solution to the next, so that the sequence 
of direct radiance solutions converges to the measured radiance.  We shall see 
examples of both solution categories below. 

The classification of inverse problems is discussed in detail in the 
review paper by McCormick (1992b). 

10.2 Inversion of the RTE 

Let us recall the integral Eq. (9.87) relating the asymptotic radiance 
distribution to the IOP's T  and .o

(10.1) 

In Chapter 9 we presumed to know the IOP's, and we regarded this equation 
as one to be solved for 64 and . We can just as well imagine determining

 and 64 by measurements at great optical depth, and then 
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solving Eq. (10.1) for T  and . However, use of this equation requires us to o

be in homogeneous water, so that an asymptotic radiance distribution exists. 
In addition, we must make our measurements within the asymptotic regime, 
i.e. at great depth. These two requirements rule out the use of Eq. (10.1) near 
the surface or for inhomogeneous waters, which are precisely the situations of 
greatest interest in hydrologic optics. 

Uniqueness of the inversion 

Let us suppose that we have measured the radiance distribution
 throughout a water body.  We then azimuthally average  to 

get 

Zaneveld (1974) expanded  and the volume scattering function 
(VSF) $ as series of Legendre polynomials: 

(10.2)


Substituting the forms (10.2) into the azimuthally averaged, source-free RTE 
led to a set of differential equations for the expansion coefficients A  and B .n n

These equations eventually led to explicit formulas for the beam attenuation 
coefficient c, 

(10.3) 

and for the VSF, 

(10.4) 
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Equations (10.3) and (10.4) give us a very important result:  The 
radiance and its depth derivative together uniquely determine the IOP's c and 
$.  We can thus lay to rest our philosophical (but not our practical) concerns 
about the uniqueness of IOP's associated with a particular light field.  Note, 
however, that having  at only one depth is not sufficient to uniquely 
specify the IOP's at that depth.  We must also know dL/dz, which can be 
estimated from measurements at two closely spaced depths. 

Unfortunately, though, Eqs. (10.3) and (10.4) are of little use for actual 
retrievals of c and $ from measured radiances. The reason becomes clear if we 
recall from Fig. 9.1 that an expansion of natural-water phase functions in 
Legendre polynomials, as in Eq. (10.2), requires hundreds of terms.  We must 
have the same number of terms in Eq. (10.4).  Computing the high-order Bn 

coefficients requires that L and dL/dz be measured with extreme accuracy and 
directional resolution in order to evaluate the integrals seen in Eq. (10.4).  In 
practice, we can at best measure L to an accuracy of a few percent on a 2-grid 
with a resolution of a few degrees.  This is by no means sufficient for a 
retrieval of $. Similarly, we note in Eq. (10.3) that c is obtained from the limit 
of an infinite sequence of terms like those involved with $. 

McCormick (1986) has reviewed the large body of literature on 
inversion algorithms based on expansions of L and  in fashions similar to Eq. 
(10.2), but including the N dependence of . Many of these algorithms 
rely on the additional information contained in the azimuthal dependence of 
the radiance.  These algorithms may work in situations where Rayleigh or 
isotropic scattering is applicable, so that only a few terms in the  expansion 
are required.  Such situations occur, for example, in atmospheric optics and in 
neutron diffusion, but not in natural waters.  However, these algorithms suffer 
the same inability to handle highly peaked phase functions as does Zaneveld's 
method. 

The Wells compound radiometer 

Wells (1983) performed a decomposition of L and $ similar to that seen 
in Eq. (10.2) [see Supplemental Note 12].  He defined moments of the radiance 
distribution as 

where  is the azimuthally averaged radiance and n = 0, 1, 2, .... 
Likewise, the moments Sn of the volume scattering function $ are defined 
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by 

(10.5) 

A related set of coefficients Dn [which Wells denoted by A , but which must n

not be confused with the An of Eq. (10.2)] is defined by 

where c is the beam attenuation coefficient.  Note from Eq. (10.5) that S0 = b 
and that S4 = 0 (from the nature of P as n 6 4); hence, D0 = a and D4 = c. Then 

D  are IOP's, and knowing them is equivalent to knowing a, c, and $.n

Physically, the Dn can be loosely interpreted as decay rates with depth for the 
L .n

Wells showed that the D  are determined from the moments of then

radiance via 

(10.6) 

where  Note that Eq. (10.6) for n = 0 is just Gershun's law.

Wells realized that the radiance moments L  can be measured directly
n

by an instrument whose angular response is proportional to and 
independent of N.  Such an instrument has been constructed (Doss and Wells, 
1992).  The prototype instrument uses ten specially shaped mirrors to measure 
L0, ..., L9, from which D0, ..., D8 are computed by Eq. (10.6).  The needed 
derivatives of L  are estimated from measurements of L  at closely spaced n n

depths.  The instrument thus gives the first nine terms of the Dn sequence. An 
independent measurement of c, which is easily made, gives D4. One can then 
estimate the remaining Dn, n $ 9, by interpolation based on D0, ..., D8 and D4. 
The VSF is then recovered by inverting Eq. (10.5) to get 

Note that this equation in essentially the same as Eq. (10.4). 
The initial sea trial of this instrument (Doss and Wells, 1992) showed 

a good recovery of the total absorption coefficient a = D0 when compared to 
a values determined by filter-pad techniques.  It should be noted that the 
instrument gives an in-situ, real-time determination of the absorption.  The 
recovered $(R) looked realistic except at R > 160°. The 
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unrealistic behavior of $ for large R was probably due to inaccurate estimation 
of the Dn's for large n values. No instrument was available for a direct 
measurement of $(R). 

10.3 Inversions Based on the Irradiance Quartet 

We have just seen that inverting the RTE given measured radiances is 
in principle possible, but is in practice a difficult-to-impossible task.  We now 
investigate what information can be recovered from measured irradiances.  In 
this section we assume that downwelling and upwelling plane and scalar 
irradiances are measured as functions of depth z at the wavelength of interest. 
These quantities form the irradiance quartet 

Because these irradiances contain less information than the radiance, we 
expect to recover less information than can in principle be obtained by 
inverting the RTE.  But since the governing two-flow equations have a simpler 
mathematical form than the integro-differential RTE, they may yield more 
easily to inversion.  We first consider formal inversions of the two-flow and 
related equations.  We then consider other ways to squeeze information from 
the irradiance quartet. 

Information requirements for the inversion 

We know from problem 5.1 that adding the two-flow equations yields 
Gershun's law, which then can be solved in source-free waters for the 
absorption coefficient a: 

This is the simplest possible inversion of the two-flow equations.  Errors in the 
measured irradiances, or the presence of internal sources, will result in errors 
in the recovered absorption coefficient.  At the end of Section 5.9, we cited 
recent applications of Gershun's law to the recovery of a. 

Gershun's law gives us one equation in one unknown, and a measured 
irradiance quartet provides sufficient information to effect the inversion.  The 
needed derivative can be estimated from measurements at different depths. 
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We next examine the two-flow Eqs. (5.54) and (5.55) from the 
information standpoint.  These equations can be written to show the members 
of the irradiance quartet explicitly: 

(10.7)


(10.8)


We thus have two equations in the three unknowns a, bdu and bud, which is 
insufficient to obtain a unique inversion. 

In order to proceed, we can follow either of two paths.  First, we can 
conjure up a third independent equation relating the unknowns and the 
irradiance quartet, so that we have three equations in three unknowns.  Or 
second, we can add an additional measurement (for example, an independent 
measurement of the absorption coefficient a) to the irradiance quartet, so that 
we have left only two unknowns. 

The algorithm of Preisendorfer and Mobley 

Preisendorfer and Mobley (1984) chose the first path, as follows.  The 
different directional structures of the upwelling and downwelling radiance 
distributions cause bud to differ from bdu, as we saw in Section 5.10.  Because 
these directional structures are parameterized in terms of the mean cosine 
and , Preisendorfer and Mobley reasoned (incorrectly) that the differences 
in bud and bdu could to a large extent be removed by the mean cosines.  They 
thus assumed that 

(10.9) 

Equation (10.9) is exact for isotropic scattering, in which case , the
backscattering coefficient of Eq. (3.6b).  It was hoped that Eq. (10.9) would 
remain a useful approximation for anisotropic phase functions, and was 
termed a "mean backscattering coefficient."  Note that  is an AOP, which 
was presumed to be roughly equal to the IOP bb. As we saw in Section 5.12, 
recovery of a and bb would be particularly valuable because these are the two 
IOP's most responsible for determining "ocean color," as manifested in the 
irradiance reflectance R [recall Eq. (5.75), for example]. 

Equation (10.9) provides the needed third equation for use along with 
Eqs. (10.7) and (10.8). Use of Eq. (10.9) then reduces the two-flow 
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equations to two equations in the two unknowns a and : 

(10.10) 

(10.11) 

The mean cosines are of course computable from their definitions (3.14) and 
(3.15) if the irradiance quartet is measured. 

Preisendorfer and Mobley went on to develop a rather complicated 
iterative inversion scheme for Eqs. (10.10) and (10.11), rather than just 
explicitly solving Eqs. (10.10) and (10.11) for a and for each set of 
measured irradiances and estimated (by finite differences in depth) derivatives. 

The purpose of their implicit solution scheme was the following. 
Suppose that the four members of the irradiance quartet are measured at 
discrete depths zi. i = 1, 2, ..., I. The iterative scheme then recovers depth 
profiles a(z) and that exactly reproduce the measured irradiances Ed(zi) 
and Eu(zi) when a(z) and  are used in Eqs. (10.10) and (10.11), and the 
equations are integrated with depth.  The algorithm thus has the desirable 
property of achieving an inversion that is consistent with the available data. 

Unfortunately, however, the fundamental assumption (10.9) leading to 
Eqs. (10.10) and (10.11) is flawed. Aas (1987) and later Stavn and 
Weidemann (1989) showed that for oceanic water,  is typically two to 
four times . These authors introduced the shape factors 

(10.12) 

Assumption (10.9) is then equivalent to assuming that r  = rd. Numericalu

simulations by Stavn and Weidemann showed that the ratio depends on 
the composition of the sea water, which is highly variable.  Their results return 
us to a problem with two equations and three unknowns, which can be viewed 
as a, ru, and rd; or as . Extensive observational data or 
numerical simulations could perhaps reveal relationships between and 
water composition, so that we could again reduce the inversion problem to two 
unknowns in two equations.  However, this line of research has not been 
pursued. 



481 10.3 Inversions Based on the Irradiance Quartet 

In summary, the proper view of the Preisendorfer-Mobley inversion 
algorithm is that it recovers two numbers, a and , which when used in Eqs. 
(10.10) and (10.11) exactly reproduce the measured plane irradiances. 
However, it is not possible to relate the AOP to the IOP bb in any simple 
fashion.  We include this discussion of the Preisendorfer-Mobley algorithm 
because its failure highlights an inherent weakness in inversions based on the 
two-flow equations, or upon any simplification thereof [such as the model 
developed in Stavn and Weidemann (1989)]. The two-flow equations cannot 
be inverted without making an a priori assumption, which usually is cast as an 
assumption about the diffuse backscatter coefficients bdu and bud. However, 
because of the variability of these quantities in natural waters, we have little 
guidance on how to formulate the needed assumption. 

The algorithm of McCormick and Rinaldi 

McCormick and Rinaldi (1989) developed an algorithm that recovers 
the similarity parameter 

(10.13) 

from measurements of the irradiance quartet at two depths.  Here g is the mean 
cosine of the scattering phase function, defined as in Eq. (3.8b). The 
significance of s is that quantities such as the reflectance of a water body are 
nearly the same for water bodies having different a, b and g values, but having 
the same value of s. Similarity parameters are discussed in general by van de 
Hulst (1980, Chapter 14). 

Let
and let 

 be the net irradiance defined in Eq. (1.28), 

where z1 and z2 are two depths. Then s is the solution of 

(10.14) 

that lies in the interval  0 # s # 1. Note from Eq. (10.13) that s 6 0 as a 6 0, 
and s 6 1 as b 6 0. Here a1, ..., a4 are constants that depend on the 
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scattering phase function, but only weakly.  For the Petzold turbid-harbor 
of Fig. 3.13 and Table 3.10, 

(10.15) 

Thus all of the quantities in Eq. (10.14), except s, are known if the shape of the 
phase function is assumed and the irradiance quartet is measured at two 
depths.  For most natural waters, the a's given in Eq. (10.15) should be 
acceptably close to the actual, but unknown, a's. A root-finding algorithm 
must be used to find s.  If a value for g is assumed, then b/a can be obtained 
from Eq. (10.13) using the recovered value of s. For the Petzold 
corresponding Eq. (10.15), g = 0.933.  Numerical tests of the McCormick-
Rinaldi algorithm show that s is recovered to within 1% of its true values for 
depths greater than 14 m when T # 0.84, if there are negligible errors in the o 

measured irradiances.  The recovered s becomes less accurate near the sea 
surface, if To > 0.84, and if there are random errors in the measured 
irradiances. 

Recovery of internal sources 

In the algorithms discussed above, light from internal sources such as 
bioluminescence or fluorescence is a source of error in the recovered IOP's. 
However, one person's noise is another person's signal.  Sunlight-induced 
fluorescence can contribute significantly to underwater light fields at certain 
wavelengths, as can night-time bioluminescence.  There is therefore 
considerable interest in developing ways to determine the location and strength 
of naturally occurring internal sources. 

A recent series of papers culminating in Tao, et al. (1994; see 
references therein) has presented algorithms for the recovery of internal source 
locations and strengths using only in situ irradiance measurements. A 
radiometer detects the total amount of light entering it.  The inherent difficulty 
in this problem thus lies in separating the contribution to the measured total 
light field made by the internal source from the contribution made by external 
sources such as the sun or moon. 

The Tao, et al. algorithm is complicated, so we shall forego presenting 
the equations.  However, the essence of the method is as follows.  It is 
assumed that the irradiance quartet is measured, and that the phase function of 
the water is known.  Since  is not measured in practice, it reasonably can be 
assumed that a particle-like (Petzold) phase function describes the water body. 
The RTE is integrated over direction to develop 
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a series of equations governing certain moments of the radiance, En(z), n = 0, 
1, .... These moments are defined by 

where Pn(:) is the Legendre polynomial of order n. Note that E0(z) is just the 
scalar irradiance, and that E1(z) is the net irradiance Ed(z) - Eu(z). The first 
equation so obtained is just the divergence law (5.35), i.e. Gershun's law 
including the internal source term.  The second equation relates the depth 
derivative of to and to En, n $ 1. Subsequent 
equations involve the depth derivatives of higher-order En's (n > 1). Since the 
higher-order En's cannot be determined from the measured irradiance quartet, 
the infinite sequence of equations is terminated at three by relating the higher-
order En's to the asymptotic radiance distribution determined from the assumed 

.  It is also assumed that the source strength varies linearly between the 
depths zi where the irradiance quartet is measured.  Thus E S(z) = Qc(i) + QR(i)zo 

for zi # z # zi+1, where Eo
S is the source term seen in the divergence law (5.35). 

Several algorithms based on the above ideas have been tested 
numerically.  The most successful one is an implicit scheme that minimizes a 
nonlinear functional involving the measured irradiances, the absorption 
coefficient, and the two parameters Qc and QR defining the internal source. 
Initial numerical tests of this algorithm are encouraging.  The absorption 
coefficient a and the depth profile (location and strength) of the internal source 
are accurately recovered at depths below about 10 m.  The presence of realistic 
amounts of random noise in the measured irradiances does not significantly 
degrade the algorithm's ability to recover the internal source. 

10.4 Inversions Based on the Plane Irradiances 

In spite of its utility, the full irradiance quartet is seldom measured. 
This is in part because of the difficulty of measuring Eod and Eou; and in part 
because the researchers making the measurements often are interested in just 
Kd or R values, for example, which can be obtained from plane irradiances 
only.  We are consequently led to investigate how much information can be 
extracted from Ed and E  alone.u

We first recall from Section 5.12 the various relations between Kd, R, 
a, b, and bb. For example, Eq. (5.79) relates to a and b/a, where  is the 
average of Kd(z) over the euphotic zone.  Kirk (1984) gives a similar 
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relation for K10, the value of Kd at the depth z10 where Ed has decreased to 10% 
of its surface value: 

(10.16) 

As before, :sw is the cosine of the sun's zenith angle after refraction by a level 
water surface.  The value of K10 must be determined by measurements of Ed 

just above and just below the z10 depth. 
Equation (10.16), if coupled with a measurement of beam attenuation 

c and the observation that b/a = c/a ! 1, gives a quadratic equation for a: 

(10.17) 

The positive root for a then yields b = c ! a. The backscatter coefficient then 
can be determined from Eq. (5.75): 

(10.18) 

where R(0) = Eu(z=0)/Ed(z=0).  Finally, we note that Kirk based the numerical 
simulations leading to Eqs. (10.16)-(10.18) on the assumption that the Petzold 
turbid-harbor phase function of Fig. 3.13 is appropriate. 

Various researchers have used the above, or similar, relations to 
recover absorption and scattering values.  For example, Weidemann and 
Bannister (1986; see other reference therein) used measurements of Ed and Eu 

to compute R and Knet (the diffuse attenuation coefficient for Ed ! Eu) at the 
10% irradiance level, z10.  They obtained from R10 using a numerically 
generated relation between and K10 given in Kirk (1981).  They then 
obtained a from Gershun's law in the form of Eq. (5.69): 

Substituting this value of a into Eq. (10.16) gave b/a at z10, from which b10 was 
obtained by . 

Weidemann and Bannister also used standard laboratory techniques of 
filtration, centrifugation, and spectrophotometry to determine the individual 
contributions to absorption by pure water, dissolved organic substances 
(yellow matter), and particles (both chlorophyll-bearing and detrital).  The 
optically obtained, total a was in reasonable agreement with the sum of the 
component contributions obtained by the laboratory 
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techniques.  The data taken by Weidemann and Bannister were from a 
eutrophic, freshwater lake with chlorophyll concentrations of 15-35 mg m-3. 
The 10% irradiance level was usually between 2.0 and 2.5 m. 

Gordon's inversion of Kd and R 

Gordon (1991) used numerical simulations for a wide range of oceanic 
conditions to develop explicit algorithms for retrieving a, b and bb from 
measurements of the plane irradiances Ed and E , and of the beam attenuationu

coefficient c. Let K and R denote the respective values of Kd(z) and R(z) 
measured just below the sea surface.  The measured value of K in first 
normalized in the manner described in detail in Section 3.2, namely by 
dividing K by a certain downwelling distribution function D . We explainedo

in Section 3.2 how to estimate D  from field measurements.  The normalized o

quantity K/Do corresponds closely to the value of K that would be measured 
with the sun at the zenith, with a level water surface, and with the atmosphere 
removed (i.e., with a black sky). 

Next let  be the probability of forward scattering for the 
(unknown) scattering phase function ; bf is the forward scattering coefficient 
defined by Eq. (3.6a). 

Gordon first shows that the quantity  can be expanded as 

(10.19) 

where the expansion coefficients are 

This expansion recovers
Gordon next shows that 

to about 1% accuracy. 

(10.20) 

where the expansion coefficients are 

r1 = 2.8264, r2 = !3.8947, r3 = !36.232. 

Here R(1) / R(Do=1) is the irradiance reflectance that would be measured in 
the zenith-sun, level-surface, no-atmosphere case (the only case for which Do 

= 1). The value of R(1) must be determined by extrapolation from 
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values of R(Do) made for two or more D  values. For example, R can beo

measured at several different solar zenith angles 2s during the course of a day; 
each 2s value gives a different D  value. The relation between R(Do) and Do o 

is linear for a given scattering phase function.  The estimated values of R(1) 
and the measured K and Do values yield bb from Eq. (10.20). This estimate of 
bb is available even if c is not measured. 

If c is also measured, then a and b can be determined as follows. The 
value of bb obtained from Eq. (10.20) gives us 

so that is known. To fromSince , we can determine 

after obtaining  from Eq. (10.19).  We now get b from b = cT , and ao

from a = c ! b. 
Gordon estimates (based on numerical simulations) that his algorithm 

will recover a and b to better than 1% accuracy, and bb to better than 10%.  It 
should be noted that this algorithm requires no assumptions about the shape 
of the scattering phase function.  The only irradiance measurements needed are 
Ed and Eu just below the sea surface, and Ed just above the surface (in order to 
estimate Do). Gordon also shows how the phase function (R) can be
estimated over a limited range of scattering angles, typically 60° # R # 150°. 
However, the recovery of the phase function is not as satisfactory as is the 
recovery of a, b, and bb. 

Detection of inelastic scattering 

Numerical simulations by Ge, et al. (1993) show that high-spectral-
resolution measurements of Fraunhofer lines can be used to determine the 
contribution of inelastically scattered light to the total underwater light field. 
Recall from Fig. 1.1 that the Fraunhofer absorption lines are very narrow (-0.1 
nm) bands where there is relatively little (-20% of background) solar 
irradiance. 

Their underlying idea is simple.  Suppose that there are no inelastic 
scattering processes (such as Raman scattering or fluorescence) contributing 
to the light field near some wavelength 8, where there is a Fraunhofer line. 
Then the line depth 0 of the Fraunhofer line will remain unchanged with 
geometric depth z in the water.  Recall from the discussion of Fig. 1.1 that  
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the line depth is defined as the ratio of the irradiance at the deepest part of the 
Fraunhofer line to the irradiance of the background just outside the line.  For 
the line at 8 = 486.13 nm mentioned in the discussion of Fig. 1.1, 0 = 0.2. 
However, if there are broadband (relative to the width of the Fraunhofer line) 
inelastic contributions to the light field near 8, then the line depth 0 will 
decrease with depth in the water as the solar contribution decreases and the 
total light field becomes dominated by inelastically scattered light, which is 
nearly constant over wavelength intervals of a few nanometers.  A line depth 
of 0 = 1 means that the solar light, along with its Fraunhofer line, has 
completely disappeared leaving only light inelastically scattered from the 
wavelengths.  Using measured values of 0 at the surface (z = 0) and at depth, 
it is then possible to separate the total irradiance into elastically and 
inelastically scattered parts.  The numerical simulations in Ge, et al. (1993) 
indicate that this novel use of high-resolution spectral irradiance measurements 
may provide a new way of detecting sunlight-induced fluorescence by 
dissolved organic substances (which fluoresce at all visible wavelengths). 
Similar calculations have been performed by Kattawar and Xu (1992). 

10.5 Remote Sensing 

The preceding sections of this chapter have discussed the inversion of 
radiometric measurements made within the water.  We now consider the use 
of measurements made remotely from aircraft or satellites as a way of 
obtaining information about the IOP's or constituents of natural waters. 

Oceanic remote sensing using electromagnetic signals is commonly 
performed from the near UV to various radar bands, whose wavelengths range 
from -1 cm to -1 m. 

This remote sensing can be active or passive. Active remote sensing 
means that a signal of known characteristics is sent from the sensor platform 
– an aircraft or satellite – to the ocean, and the return signal is then detected 
after a short time delay determined by the distance from the platform to the 
ocean and by the speed of light.  An example of active remote sensing at 
visible wavelengths is the use of laser-induced fluorescence to detect 
chlorophyll, yellow matter, or pollutants. In laser fluorosensing, a pulse of UV 
light is sent to the ocean surface, and the spectral character and strength of the 
induced fluorescence at UV and visible wavelengths gives information about 
the location, type and concentration of fluorescing substances in the water 
body. Laser fluorosensing is discussed, for example, in Measures (1992). 
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In passive remote sensing we simply observe the electromagnetic 
radiation that is naturally emitted or reflected by the water body.  One example 
at visible wavelengths would be the night-time detection of bioluminescence 
from aircraft.  Another example is the detection of sunlight that has been 
backscattered by the water. 

The full range of these remote sensing methods and their applications 
can be seen in the books by Saltzman (1985), Robinson (1985), and Stewart 
(1985).  In this section we shall discuss a small but very important subset of 
remote sensing: the use of "ocean color" to obtain information about natural 
water bodies. 

Ocean color 

As we saw in Chapter 2, the color of a water body can be computed if 
a spectral radiometric quantity is measured over the visible wavelengths.  In 
practice this is seldom done.  Spectral signals usually are measured at only a 
few selected wavelengths, and other forms of information than the color itself 
can be obtained from such data.  The term "ocean color" is therefore loosely 
used to mean radiometric data at two or more visible wavelengths, from which 
useful information about water bodies can be extracted. 

Conceptually, ocean-color remote sensing is simple.  Sunlight, whose 
spectral properties are known, enters a natural water body.  The spectral 
character of the sunlight is then altered, depending on the absorption and 
scattering properties of the water body, which of course depend on the types 
and concentrations of the various constituents of the particular water body. 
Part of the altered sunlight eventually makes its way back out of the water, and 
can be detected from an aircraft or satellite.  If we know how different 
substances spectrally alter sunlight, for example by wavelength-dependent 
absorption or by fluorescence, then we can hope to deduce from the altered 
sunlight what substances must have been present in the water, and in what 
concentrations. 

The water-leaving radiance, which is commonly denoted by L , is thew

upwelling radiance measured in the air just above the water surface.  In our 
notation, then, 

where B/2 < 2 # B in our coordinate system.  A sensor looking straight down 
at the water surface sees the zenith radiance heading straight upward, 



489 10.5 Remote Sensing 

Fig. 10.1.  Water-leaving radiances L  as a function of wavelength for fourw

chlorophyll concentrations C, in case 1 waters.  The shaded regions labeled 1-4 
indicate the detector bandwidths of the CZCS sensor.  [redrawn from Gordon, 
et al., (1985), by permission] 

i.e., photons traveling in the 2 = B direction. This special case of Lw(2=B) is 
sometimes called the nadir-viewing radiance. 

Figure 10.1 shows the water-leaving radiance for several 
concentrations of  chlorophyll a in case 1 waters.  We could compute the color 
associated with these Lw(8)'s by using the formulas of Chapter 2.  Clearly, the 
color shifts from blue to green as the chlorophyll concentration C increases. 
By plotting the color on a CIE chromaticity diagram for different values of C, 
we could determine the path followed across the diagram as C increases. If we 
then measured Lw(8) from a water body with an unknown C value, we could 
compute the color, compare it with the colors for known C values, and 
determine the value of C that most closely corresponds to the color of the 
water body in question.  In so doing, we would have estimated the chlorophyll 
concentration of the water body using only the remotely sensed spectral 
radiance. 
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However, such complete spectral information is seldom available.  The 
four shaded regions at the top of Fig. 10.1 show the bandwidths of the four 
visible-wavelength channels of the Coastal Zone Color Scanner (CZCS). 
CZCS was a satellite ocean-color sensor, which was in operation from 1978 
to 1986.  These four bands are centered at 81 = 443 nm, 82 = 520 nm, 83 = 550 
nm, and 84 = 670 nm.  We can see from the figure that the ratios of L in twow 

different sensor bands vary in a systematic way with chlorophyll 
concentration.  This observation is the key to ocean color remote sensing as 
it is commonly practiced. 

Let R(i,j) denote the ratio 

(10.21) 

where i, j = 1, 2 ,3, 4 for the CZCS. Figure 10.2 shows the value of the 
chlorophyll concentration C as a function of R(1,3) = Lw(81=443)/Lw(83=550), 
for case 1 water.  The correlation between logC and logR(1,3) means that we 
can estimate C from radiance remotely measured at only two wavelengths (on 
the assumption that we are in case 1 water). 

Fig. 10.2.  Chlorophyll concentration C as a function of the water-leaving 
radiance ratio R(1,3), for case 1 waters.  [reproduced from Gordon, et al. 
(1983), by permission] 
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The roughly linear dependence of logC on logR(1,3) seen in Fig. 10.2 
suggests a relation of the form 

(10.22) 

where A(i,j) and B(i,j) are coefficients that depend on the particular sensor 
wavelengths 8i and 8j used in computing the radiance ratio R(i,j). The solid 
line in Fig. 10.2 is the least-squares best-fit curve of the form (10.22). 

 Relationships like Eq. (10.22) can be used to retrieve other quantities 
as well.  For example, Fig. 10.3 shows the dependence of Kd(8=490) on the 
R(1,3) ratio. The solid curve is given by 

(10.23) 

which has the form of Eq. (10.22) if logarithms are taken.  Here, Kd,w(490) is 
the downwelling diffuse attenuation coefficient of pure water; Kd,w(490) = 
0.021 m!1 from Table 3.5. 

Fig. 10.3. Kd at 8 = 490 nm as a function of the water-leaving radiance ratio 
R(1,3).  The solid curve is given by Eq. (10.23).  [redrawn from Austin and 
Petzold (1981), by permission] 
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Complications 

As might be suspected, the actual use of remotely sensed radiances to 
recover chlorophyll concentrations is more complicated than indicated in the 
above discussion.  The major difficulty in the use of data obtained by satellites 
arises because of the intervening atmosphere.  The radiance detected at the 
satellite includes not just the water leaving radiance, which carries the 
information about the water body.  The detected radiance also includes 
contributions by sky radiance reflected toward the sensor by the sea surface 
and, most importantly, by solar radiance scattered toward the sensor by 
atmospheric gases and aerosols.  In practice, the water-leaving radiance 
accounts for less than 10% of the total radiance detected at the satellite. 

The confounding effects of the atmospheric contribution can be 
removed if the optical properties of the atmosphere are known. In essence, we 
must perform a radiative transfer calculation for the atmosphere in order to 
predict how much of the solar beam will be scattered towards the sensor and 
transmitted through the atmosphere to it.  This calculation depends on the 
relative position of the sun and sensor, as well as on the nature and vertical 
distribution of atmospheric aerosols.  Unfortunately, atmospheric aerosols are 
quite variable in kind, concentration, and distribution. The atmospheric 
correction calculations therefore always involve a certain amount of educated 
guessing. In any case, after the atmospheric (and sea surface) effects have 
been predicted, the associated radiance is subtracted from the measured 
radiance in order to obtain an estimate of the actual water-leaving radiance. 
Details of the rather complicated atmospheric-correction process are given in 
Gordon and Morel (1983) and in Gordon, et al. (1988). 

The paper by Gordon, et al. (1988) also develops a more sophisticated 
model than Eq. (10.22) for the retrieval of C from R(i,j). This more recent 
inversion algorithm includes the effect of yellow matter derived from 
phytoplankton, and gives a nonlinear relation between logC and logR(1,3), but 
still is applicable only to case 1 waters. 

Remote sensing of case 2 waters is much more complicated because we 
must be able to separate the effects of chlorophyll from the effects of mineral 
particles or high concentrations of terrestrially derived yellow matter.  This 
separation can be partially achieved by the addition of carefully chosen 
wavelength bands.  For example, the SeaWiFS (Sea-viewing Wide-Field-of-
view Sensor, scheduled for launch in 1994) ocean color sensor will have a 
band centered at 412 nm.  This band will help distinguish yellow matter, which 
has high absorption at 412 nm [recall Eq. 
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(3.25)], from chlorophyll, whose absorption decreases below -440 nm (recall 
Fig. 3.7). 

The coming availability of high-spectral-resolution data opens the door 
to other kinds of remote-sensing algorithms.  For example, preliminary work 
(C.O. Davis, personal communication) indicates that the wavelength derivative 
dLw/d8 evaluated at 8 = 570 nm can be used to distinguish suspended 
sediments (or bottom reflectance in shallow waters) from biological particles. 
Likewise dLw/d8 at 8 = 710 nm can be used to identify kelp beds.  Such 
derivatives cannot be estimated if only a few wavelength bands are measured. 
The development of remote-sensing inversion algorithms for use in case 2 
waters scarcely has begun.  As with other facets of the hydrologic optics of 
such waters, the remote sensing of case 2 waters will provide challenging 
research problems for a generation of scientists. 

Remote-sensing reflectance 

We have now encountered the essential ideas upon which ocean color 
remote sensing rests.  However, we cannot end this section without discussing 
the remote-sensing reflectance Rrs, which was defined in Eq. (3.18) as 

(10.24) 

We can now understand the utility of R . The downwelling irradiance onto the rs

sea surface, Ed(a), can be considered as known; Ed(a) is usually obtained from 
a simple atmospheric radiative transfer model such as that of Gregg and Carder 
(1990). Rrs therefore provides the connection between the known input to the 
water body and its output, which is the water-leaving radiance.  This 
connection warrants further investigation. 

Let us recall how Ed(a) gets into the water, and then how upwelling 
radiance gets out of the water.  First, from the interaction principle of Eq. 
(4.6), we have 

or 

(10.25) 

As always, t(a,w) = 1 ! r(a,w). The irradiance reflectances r(a,w) and 



494 Inverse Methods 

r(w,a Next, consider the upwelling) were studied extensively in Chapter 4.  
radiance just beneath the surface,  L!(w; ), 0 = u, being transmitted through 
the surface to give the water-leaving radiance Lw(a; ) = L!(a; ), 0 = . Theu

n2 law for radiance, Eq. (4.21c), relates these two quantities: 

(10.26) 

Here n . 1.34 is the index of refraction of the water, and is thew 

Fresnel radiance transmittance from water to air (tF = 1 - rF, as discussed in 
Chapter 4. 

Substituting Eqs. (10.25) and 10.26) into (10.24) gives 

This equation can be rewritten as 

where 

and 

(10.27) 

(10.28) 

Equation (10.27) is exact.  It is often encountered in the literature in an 
approximate form valid for many remote sensing situations.  Let us consider 
only the case of and nearly normal to the mean sea surface. Then 

where is the Fresnel reflectance 
of a level surface, as seen in Fig. 4.3. Now from Figs. 4.11 and 4.16, we see 
that r(a,w) < 0.07 for the sun within 60° of the zenith in a clear sky, or for 
overcast skies.  Typically, t(a,w) = 1 ! r(a,w) . 0.96. Likewise, from Fig. 
4.17, r(w,a) < 0.7 for diffuse upwelling light fields.  The irradiance reflectance 
R is almost always less than 0.1 in case 1 waters.  Thus, Eq. (10.27) can be 
approximated by 

(10.28) 
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The ratio R/Q can be connected with the IOP's of a water body.  For 
example, Gordon, et al. (1988) show that for case 1 waters, 

(10.30) 

and that 

(10.31) 

The approximation (10.31) is accurate to better than 20%. 
Suppose, for example, that we determine R  from a modeled value ofrs

Ed(a) and a remotely sensed value of Lw, and that we remotely determine Kd 

as in Eq. (10.23).  Then we can combine Eqs. (10.29) and (10.31) to obtain an 
estimate of the IOP bb, or of the absorption a if we then employ Eq. (10.30). 

Zaneveld (1989) has pointed out that similar formulas based on in situ 
measurements of  can be used to recover bb after a is 
determined via Gershun's law. 

The remote sensing reflectance is of such great utility that commercial 
instrument packages often include sensors for the simultaneous measurement 
of  and Ed(z;8) at the wavelengths of interest for remote 
sensing.  However, the user of convenient formulas like (10.29)-(10.31) must 
keep in mind that they are approximations based on a certain geometry, 
namely  and  pointing toward the zenith, and on the assumption of case 1 
water.  If our remote sensing radiometer is pointed away from the nadir 

thebidirectionaldependenceof andthedirectionaldependenceof
direction, we must return to the exact formula (10.27) and take into account 

 Algorithms with this level of sophistication have seldom been used in ocean 
color remote sensing studies, in part because the needed information has not 
been available. 

Morel and Gentili (1993) have recently studied the dependence of Q, 
an AOP, on direction, wavelength, water IOP's, and sky conditions.  They 
found that Q values generally range from 3 to 6, with the low values occurring 
in clear waters at blue wavelengths, and with the high values occurring at 
higher chlorophyll concentrations and red wavelengths, in case 1 waters. 
Detailed studies such as Morel's and Gentili's, along with computations of 
radiance transmittances for sea various states and incident and transmitted 
directions, as illustrated in Section 4.8, form the basis for improved remote 
sensing algorithms. 
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Gordon and Morel (1983) and Gordon, et al. (1985) are excellent 
references on ocean color remote sensing.  The conference proceedings by 
Gower (1987) show the incredible variety of oceanographic studies that have 
employed data from the Coastal Zone Color Scanner. 

10.6 Problems 

10.1  The irradiance data shown in Table 10.1 were taken (actually, 
numerically simulated using the model developed in Chapter 8) under the 
following conditions: 

clear sky

solar zenith angle:  2  = 38°
s

!solar direct-beam irradiance:  Ed(sun) = 0.569 W m!2 nm
!1diffuse sky irradiance:  Ed(sky) = 0.100 W m!2 nm


wind speed:  U = 7.2 m s!1


well mixed water

chlorophyll concentration:  C = 0.5 mg m!3


wavelength:  8 = 500 nm

beam attenuation coefficient:  c = 0.274 m!1.


(a)  Using the measured irradiance data, estimate a, b, and bb as many ways as 
possible. 
(b)  Do the values from (a) agree with the values predicted by the bio-optical 
models of Chapter 3? 

10.2.  Using the data of Table 10.1, compute the values of R, R , and Q at z = rs

a, 1 m, 5 m, and 100 m. 

10.3.  What is the value of Q if the upwelling radiance distribution L!( ) is 
isotropic? 

10.4. Show that the absorption a can be obtained from bb and Rrs by 

This result gives a negative absorption if R  > 0.051.  However, in extremely rs

turbid case 2 waters, Rrs can be greater than 0.051.  What is wrong with the 
above formula for a? 
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Table 10.1.  Spectral irradiance and zenith (nadir-looking) radiance values 
for use in problems 10.1 and 10.2.  All irradiances have units of W m!2 

!1nm!1 and L! has units of W m!2 sr  nm!1; 5.879!2 means 5.879×10!2, etc. 

z 
(m) 

Eou Eod Eu Ed L!(2=B) 

air 5.879!2 9.000!1 2.726!2 6.691!1 5.647!3 
0 4.684!2 7.800!1 1.888!2 6.607!1 3.952!3 
1 4.557!2 7.398!1 1.804!2 6.147!1 3.705!3 
2 4.385!2 6.980!1 1.713!2 5.711!1 3.464!3 
5 3.767!2 5.753!1 1.433!2 4.546!1 2.800!3 

10 2.735!2 4.012!1 1.014!2 3.057!1 1.915!3 
20 1.280!2 1.812!1 4.644!3 1.335!1 8.501!4 
30 5.605!3 7.840!2 2.018!3 5.707!2 3.657!4 
40 2.397!3 3.340!2 8.607!4 2.424!2 1.556!4 
50 1.017!3 1.417!2 3.651!4 1.028!2 6.602!5 
60 4.309!4 6.006!3 1.547!4 4.361!3 2.801!5 
70 1.827!4 2.548!3 6.562!5 1.851!3 1.189!5 

100 1.399!5 1.953!4 5.028!6 1.421!4 9.122!7 

10.5.  An aircraft flying 100 m above the sea surface sends a 5 ns long pulse 
of laser light of wavelength 532 nm toward the surface.  At time 7.386×10!7 

s later, the aircraft receives a return pulse that is interpreted as a reflection off 
of the bottom.  How deep is the water? 

Hoge, et al. (1988) describe how a laser bathymetry system with the 
characteristics just described was used to map a scattering layer of suspended 
particles at a depth of -10 m. 
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