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These notes outline the development of radiative transfer theory (RTT) as it is now used in
optical oceanography and ocean color remote sensing. The sine qua non of RRT is taken to be
the development or use on an equation that predicts the propagation of light through an absorbing
and scattering medium. The empirical foundations of RTT are briefly mentioned. The main
body of the notes traces, in chronological order of the selected papers, the development of
phenomenological radiative transfer equations (RTEs) from the 1880s to the 1940s. Particular
emphasis is given to the seminal papers of Lommel (1887) and Ambartsumian (1943). Although
most of the early work was driven by astrophysical problems, the resulting equations are
applicable to other media such as the oceans. The notes close with comments on the deficiencies
of phenomenological RTT and how the recent work of Mishchenko has resolved those
deficiencies and connected RTT to fundamental physics. The development of numerical solution
techniques for RTEs is not discussed.
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Introduction

Throughout history societies have found various ways—sometimes rather unpleasant—of
getting rid of a person when he or she becomes too old to perform any useful work. The modern
approach in science is to give someone a lifetime achievement award and then put them to
writing history. I seem to be right on schedule, and so far it has been a very enjoyable way to
start my dotage.

This informal and brief history of radiative transfer theory (RTT) grew out of an invitation to
present an invited talk on that subject at the International Ocean Color Science meeting in Busan,
South Korea in April 2019. I am most grateful to the International Ocean Color Coordinating
Group and to the Korea Institute of Ocean Science and Technology for enabling me to attend that
meeting.

Given the time constraints of an invited talk, I had to choose one path among several through
the history of the broad topic of RTT, and I had to choose only a few papers from hundreds and a
few persons from dozens for discussion. My goal was to reach the formulation of RTT theory as
it is now applied in optical oceanography and ocean-color remote sensing. I therefore consider
only papers that present some form of an equation (or data, in the case of Bouguer) that governs
the propagation of light through an absorbing and scattering medium. I consider such an
equation to be the sine qua non of radiative transfer theory. I will, therefore, not discuss the
contributions of Rayleigh and Mie because they were interested in scattering by single particles,
not in the larger picture of how their work fits into RTT.

As I began to review the literature, the talk naturally organized itself into three periods:

® Experimental Foundations. The work of Bougier, Lambert, and Beer.

® Theoretical Foundations. The papers of Lommel, Chwolson, Schuster, Planck,
Schwarzschild, King, Milne, Gans, Gershun, Ambartsumian, Sobolev, Chandrasekhar, and
Preisendorfer.

® Completing the Bridge. The recent work of Mishchenko, which clarifies the concepts of
radiometry and puts RTT on a firm physical foundation.

There is still another important topic: how to solve the equations once you have them. I have
omitted reviewing that history here simply because the development of analytical and numerical
solution techniques is an equally large topic, and the time allotted in my talk did not permit their
discussion.

Papers before the middle of the 20™ century can be rather difficult to understand, even if you
can read the requisite Latin, French, German, and Russian. This is because the modern concepts
of radiance, plane irradiance, scalar irradiance, intensity, and so on had not yet been formulated
in a rigorous fashion, nor was there a distinction between photometry and radiometry. Thus
Bouguer’s 1729 treatise speaks of “la force de la lumiére,” which translates literally as “the force



of the light.” The German Lommel in 1888 discusses the “die Lichtmenge,” which means “the
light amount,” and “die Leuchtkraft,” which means “the illuminating power.” Chwolson in 1889
discusses “die Lichtintensitdt,” which is “the light intensity.” It was not until Planck (1906) that I
find a paper that defines radiance as it is used today. Planck calls his radiance “spezifische
Intensitét” or “specific intensity,” or “Helligkeit” or “brightness”. In modern German, radiance is
Strahldichte, literally “beam density” or “ray density”; and irradiance is Bestrahlungsstérke, or
“radiation density”. Neither Strahldichte nor Bestrahlungsstdrke ever appear in the early German
papers. (Today, in colloquial usage, many Germans just convert the English “radiance” to
“Radianz” and never bother with Strahldichte.)

I must also complain that preparing this talk was made no easier by the fact that some
journals still give no free access to articles published well over a century ago. For example, the
Wiley Online Library wants $38 for a pdf scan of Lommel’s 1889 paper originally published in
Annalen der Physik und Chemie. (The successor journal Annalen der Physik is now a part of
John Wiley & Sons.) Even though I have access to the Wiley Online Library, they still want $38
after [ log in. Thus there are a number of papers | know only by references because they are
either simply unobtainable at any price (in particular, the early Russian literature) or because I
don’t want to spend my lunch money unless I’'m sure I actually need the article. Fortunately, I
inherited Rudy Preisendorfer’s collection of reprints, which does include Lommel (1889) and an
English translation of Gershun (1939).

The Google Books Library Project (www.google.com/googlebooks/library/) has scanned
many of the classic books, such as Bouguer (1729) and Lambert (1760), as well as some obscure
learned-society proceedings such as Lommel (1887), so these can be found on line (untranslated
of course). Similarly, Project Gutenberg (www.gutenberg.org) and the Hathitrust Digital Library
(www.hathitrust.org/digital library) have scanned many old and obscure books. These sources
were extremely valuable for finding some of the classic papers online. At times I have relied on
other reviews for insight into the importance of papers I don’t have or can’t read.

Well, enough said. The following pages collect some of the information I gathered for
presentation during my talk. I allow myself the luxury of including many photos found online,
along with biographical tidbits, which although irrelevant to the science may be entertaining.
Please let me know if you have other translations for words, or know of other papers I should
discuss. This remains a work in progress. Meanwhile, enjoy!


http://www.gutenberg.org)
http://www.gutenberg.org)
(https://www.hathitrust.org/digital_library)

Experimental Foundations

Bouguer. Pierre Bouguer (1698-1758) was a professor of
hydrology who wrote on many topics, including award-
winning papers on the measurement of magnetic declination
at sea, the measurement of the altitude of stars at sea, the
design of ship masts, and the first treatise on naval
architecture. He is consequently known as “The Father of
Naval Architecture.” He spent 10 years on a scientific
expedition to what is now Equador, the main purpose of
which was to measure the length of a degree of latitude at
the equator and to determine the exact shape of the earth.
This was the first major scientific expedition.

Pierre Bouguer by Jean-Baptiste Perronneau, now in the
Louvre (public domain reproduction)
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Figure 1 shows the method by which Bouguer studied the attenuation of light when passing
through a volume of material at B. A candle P illuminates screens D and E. Bouguer at A
observed screen D through the material B, and he observed screen E directly. He then changed
the distance PE from the candle to screen E until the visual brightness of E matched that of
screen D seen through the material. The inverse square law applied to distance PE allowed him
to deduce the amount of attenuation of light passing through B. Since the eye is an integral part
of the measurement, Bouguer’s “la force de la lumiére” is what would be called plane
illuminance in modern terminology.

Fig. 1. Bouguer’s experimental apparatus (Plate 1, Fig. 5 from Bouguer, 1760).
Using the apparatus of Fig. 1, Bouguer showed that light propagating through a medium

decreased on a pattern that could be fit by a logarithmic function. He presented these results in
the graphical form seen in Fig. 2.

brightness
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Fig. 2. Figure 4 from Bouguer (1729), enhanced in
blue to show the decrease in brightness as light
travels further into a medium.
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Lambert. Johann Heinrich Lambert (1728-1777) was a
Swiss-born prodigy who spent most of his career in Berlin
where he found lifelong sponsorship from King Frederick II
of Prussia (Oh, the luxury of a tenured hard-money
position!). In addition to his work in optics, Lambert made
the first proof that & is irrational, and he made a systematic
study of map projections (hence the Lambert conformal conic
and several other projections that bear his name and are still
in use today).

Public domain image from wikipedia.com

In 1760 Lambert published his optics masterpiece,
Photometria, or the Measure and Gradations of Light,
Colors, and Shadows, seen in below in its original Latin. In
this work, Lambert cited Bouguer’s 1760 Traité d Optique and Bouguer’s result seen in Fig. 2.

In Photometria Lambert the mathematician put

I. H LAMBERT Bouguer’s empirical result into mathematical
ACADEMIAE SCIENTIARVM ELECTO- form:
RALIS BUICAE , ET SOCIETATIS PHYSICO- ME- '
DICAE BASILIENSIS MEMERI, REGIAE SOCIETATI I(x) =1(0) e &, (1)

SCIENTUAREM GOETINGENST COMMERCID
LITERARIC ADINNCTIL

P H (@) M E T RI A where I is some measure of light (e.g., irradiance)

and K is an attenuation coefficient (e.g., the

STVE . . . . .
e absorption coefficient if the medium is non-
MENSVRA:r GRADIBVS scattering, or a diffuse attenuation coefficient in
LVMINIS, general, if / is irradiance). The interpretation of

COLORVM T VMBRAE. Eq. (1) is that for a given medium (given K), the

light decreases exponentially with distance x
traveled through the medium.

Lambert also formulated the cosine law for
irradiance incident onto a surface: () = 1(0) cos8
where 0 is the angle of incidence relative to the
normal to the surface. He also studied the
reflection by surfaces (hence, Lambertian
surfaces) and he introduced the term “albedo.”

P o St e S Tk s S s S s 2 e

AUGUSTAE Y INDELICORUM ,

Sumptibus Vipvag Eperuarpl KLETT The cover of Lambert’s 1760 Photometria. An
Typis Cumrwrorion: Perne DETLEFFEN, original of this book sold in 2011 for GBP 27,500
MDCCLX. ($36,000) at a Christie’s auction.



Beer. August Beer (1825-1863) was a German physicist and chemist. In 1852 he published a
paper “Bestimmung der Absorption des rothen Lichts in farbigen Fliissigkeiten” (“Determination
of the Absorption of Red Light in Colored Liquids™), in which he investigated the dependence of
light transmission on the concentration various salts in aqueous solution. He again found Eq. (1),
but now the interpretation is that for a given distance traveled through the medium, the decrease
in the light is proportional to the concentration of the absorbing material, which determines the
value of K in Eq. (1). This result is still used by chemists to determine concentrations by
comparing the transmission of light through a fixed distance of a sample with a known
concentration of an absorbing substance to the transmission through the same distance of a
sample with an unknown concentration. In that application, K is usually written as the product of
a molar absorption coefficient (known) and a molar concentration (to be determined).

1. Bestimmung der Absorption des rothen Lichts
in farbigen Flissigkeiten; con Beer in Bonn.

Oﬂmals schon ist dic Absorption des Lichtes beim Darch
strahlen gefiarbter Substanzen zum Gegenstande des Ver- The opening lines of

suchs gemacht worden; man richtete hiebei jedoch immer Beer's 1852 paper in
s Annalen der Physik und

ir das Avogemmerk aul die relative Schwichung der ver- ;
s 5 : i 8 Chemie.

schiedenen Farben oder, bei krystallisirten Korpern, auf

To summarize, then, it seems that Bouguer should be credited with the original understanding
of the exponential decrease of light when traveling through a material medium. Lambert gets
credit for putting Bouguer’s results into the mathematical form seen in Eq. (1). It’s then
“Lambert’s law” if you use Eq. (1) to predict the attenuation of light as a function of distance for
a given substance. It’s “Beer’s law” if you use Eq. (1) to predict the attenuation of light as a
function of concentration for a given distance. To give full credit to everyone, it should be called
the “Bouguet-Lambert-Beer law.”

If we take the measure of light in Eq. (1) to be a collimated beam of radiance L, for which the
attenuation K is the beam attenuation coefficient c, then Eq. (1) is equivalent to

dL(x)
—= =-cL(x).

o ) (2)
This is of course the beginning of the radiative transfer equation (RTE) as widely used today. If

the medium is non-scattering and without internal sources, then c is the absorption coefficient a
and Eq. (2) is the full scalar RTE. We have taken the first step in developing RTT.



Theoretical Foundations

Three Research Topics.

Three different (although related) research topics in astronomy and astrophysics drove the
development of radiative transfer theory in the late 1800s and early 1900s.

Topic 1: Predicting the Albedo of Thick Clouds.
The first of these problems was the “photometry of
diffuse backscatter.” By this was meant the problem
of predicting the light emitted by an optically thick
medium such as a dense cloud given the light
incident onto the medium and the physical
(absorbing and scattering) properties of the medium.
The immediate application was prediction of the
albedo of cloud-covered planets such as Venus and
Jupiter. This problem was addressed in the papers by
Lommel and Chwolson, to be discussed next, and
then again by Ambartsumian.

Sulphuric acid clouds on Venus. NASA photo.

Topic 2: Understanding the Origins of Bright and Dark Lines in Solar Spectra. The second
problem was to quantitatively understand the origins of the dark and bright spectral lines in solar
spectra. These are illustrated in the figure below:

S20 2440 260 S80 G040 G20

Solar spectra showing dark lines against a continuum (top) and bright lines (bottom). (Dark line
photo: public domain from https://www.flickr.com/photos/140097441@N02/25738920594.
Bright line photo from http://www.sr.bham.ac.uk/yr4pasr/project/cds/cds.htm)



https://www.flickr.com/photos/140097441@N02/25738920594

It was qualitatively understood that if a relatively cool gas is viewed against a hotter, denser
gas generating a continuous blackbody spectrum, then the cooler gas will give dark absorption
lines in the continuum. However, if the gas being viewed is hotter than the background, then the
gas spectral lines will be brighter than the background. You can observe both patterns in the
solar spectrum, depending on exactly what part of the sun is being viewed. The paper by
Schuster worked out the quantitative details of how these spectra are generated.

Topic 3: Understanding Solar Limb Darkening. The third “hot topic” of solar physics was to
understand the limb darkening seen in photographs of the entire sun, as seen below. Both the
brightness of the sun’s disk and the color change as the viewing direction goes from the center of
the solar disk to the limb (the edge of the disk). This problem was addressed by Schwarzschild
and Milne, and has come to be known as “Milne’s problem.”

Photograph of the sun during the transit of
Venus (the dot at upper right) on 05 June
2012. Note that both the brightness and the
color change in going from the center to the
edge (limb) of the Sun. (Figure from
https://commons.wikimedia.org/wiki/File:2012
_Transit_of Venus_from_SF.jpg)




Lommel. Eugen Cornelius Joseph von Lommel
(1837-1899) was a German physicist and applied
mathematician who spent most of his career at
universities in Erlangen and later in Munich. He
was an eclectic scholar who read the classics in their
original Latin and Greek. In the days when Bavaria
still had a king (that lasted until 1918), Lommel was
made a Knight First Class of the Order of Merit of
the Crown. He wrote on many topics in applied
mathematics and optics, including Bessel functions,
diffraction, and a number of papers on fluorescence.
Interestingly, his obituaries all discuss his work on
these topics but make no mention of the paper
discussed here, which is his most significant when
seen in historical perspective.

Eugen von Lommel (public domain image)

Lommel attacked the problem of diffuse reflectance (the first problem listed above) from a
new viewpoint. Earlier researchers had approached this as a problem of predicting the light
reflected by the surface of the medium, with a cloud being described by a diffuse reflection
function (e.g., a Lambertian BRDF in modern terms), as opposed to specular reflection by a
smooth surface (in which case the reflection function is the Fresnel reflectance).

Lommel presented a paper, “Die Photometrie der diffusen Zuriickwerfung” (“The Photometry
of Diffuse Backscatter”), at the May 7, 1887 meeting of the Mathematical and Physical Section
of the Royal Bavarian Academy of Science in Munich. This paper was published in the
Academy proceedings for that date and is cited as Lommel, 1887, Sitzungsber. d. math. phys.
Class d. K. B. Acad. zu Miinchen, 17, 95-132. A word-for-word identical version of this paper
was later published in 1889 in Annalen der Physik und Chemie (Neue Folge), 36, 473-502. The
subtitle of the 1889 papers says, “From the Sitzungsber...,zu Miinchen, communicated by Mr.
Verf.” Perhaps the 1889 paper is “official” version of the 1887 proceedings paper. [ You may
also see the 1889 paper cited as Wiedemann’s Annalen der Physik und Chemie because G. H.
Wiedemann was editor in chief from 1877-1899.] As we will see, this was a seminal paper for a
number of reasons.



Die Photometrie der diffusen Zuriickwerfung.
Von E. Lommel.
(EBingelavfon 7. Nai)

In einer fritheren Abhandlung ,iiber Fluorescenz*!') habe
ich in einem ,iiber die Grundsitze der Photometrie* iiber-
schriebenen Abschnitt gezeigt, dass in der theoretischen
Photometrie nicht, wie bis dahin iiblich war, die Flichen-
elemente einer lenchtenden Oberfliche, sondern die Volumen-
elemente des leuchtenden Korpers als lichtstrahlend zu The fi

a n 5 e first sentences of

betrachten seien. Demgemiiss wurden der theoretischen Be- Lommel's 1887
handlung photometrischer Probleme die folgenden drei Siitze Proceedings paper

zu Grunde gelegt: showing the reference to
—— his 1880 paper.

1) Lommel, Wied. Ann. X. 449—472; 631—654. 1880,

The first sentence of Lommel’s 1887 paper (seen above) states (with reference to his 1880
paper, which I do not have) that ... in theoretical photometry it is not, as has been previously
assumed, the surface element of a luminous surface that is to be considered, but rather the
volume element of the luminous body that is to be regarded as the light emitting element.” He
then states three fundamental results (or axioms) for photometry:

1. The light amount (Lichemenge) that is traveling from one volume element to another is
proportional to the inverse square of the distance.

2. The light amount radiating from a volume element and falling onto a surface element is
proportional to the cosine of the incident angle to the surface normal.

3. The light amount radiating from a volume element is decreased along the way by “the
absorption law.”

The first axiom indicates that Lommel was thinking of “Lichtmenge” as an irradiance: irradiance
obeys an inverse square law, but radiance does not.

Lommel’s paper is seminal in the development of radiative transfer theory, so I’'ll spend more
time on it than on most other papers. I’ll use Lommel’s notation, in case you want to compare
these notes to his original paper. For the discussion, I’ll use the English equivalent of Lommel’s
terminology. However, after reaching his integral form of the radiative transfer equation, Eq. (6)
below, I will comment further on the interpretation of his terminology.

10



Lommel’s paper is the first one I’ve found that explicitly distinguishes between absorption
and scattering, which he quantifies by a “Diffusionsvermdgen” ( or “diffusion capacity.” [In the
old papers, “diffusion” is used to mean “scattering” in general, not just diffusion in the modern
sense of a process governed by a Fick’s law in which a magnitude is proportional to a gradient of
a concentration.] Lommel states that this “diffusion capacity” is independent of the incident light
and depends only on the properties of the material, and that this quantity is zero for a completely
clear body. We can identify this quantity as the scattering coefficient. He assumes that the
“diffusion” is equal in all directions (i.e., the scattering is isotropic), in which case the irradiance
“decreases with distance by the same law as for absorption.” He then introduces an
“Absorptionsvermogen” k, which is the modern absorption coefficient. He assumes that &
depends on wavelength but that ( does not.

Lommel then considers an infinitesimally thin, horizontally infinite, homogeneous layer of
material, as shown in my Fig. 3 below. [Unfortunately, papers from Lommel’s era rarely
contained figures because in those days a figure had to be etched into a copper plate or stone slab
for printing. That was no doubt quite expensive, probably even more so than the extra charges
for color figures in some journals today.] Referring to Fig. 3, the thin slab is at a depth »” below
the surface of the absorbing and scattering medium. Lommel first considers how much light
coming from the thin slab is received by a volume element d/ located at a distance p below the
thin slab. Lommel calls F the “Leuchtkraft” (“illumination strength”) per unit volume element of
the thin slab (dv,,, in my figure). Lommel clearly regards F as emitted light, so in modern terms,

I might call F the luminosity per unit volume. The element of volume in a ring of radius =
centered on dV'is

dv,.. =7 dzdp dp = (p tan a) (p sec’a da) dB dp,

ring

where o and f are respectively the polar and azimuthal angles as shown. Integrating over the
azimuthal angle B gives the volume of the entire ring element as 27 p* tan o sec’a da dp.

The light quantity (Lichtmenge) received from this ring is then

gy F 2 p? tana sec? o do. dp o (Opseca

4n (p seca)?

3)

In this expression we see the following features:

e The light received is proportional to the receiving volume dV.

e The luminosity of the emitting thin later is isotropic over 4x steradians.

e The light received is proportional to the emitting volume of the ring element.

e The light received is inversely proportional to the square of the distance p sec o from the
source element to the receiving element.

e The light is exponentially attenuated by absorption and scattering between the source element
and the receiving element.

11
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Fig. 3. The geometry of Lommel’s derivation.

To get the light received by dV from the entire thin slab, Lommel integrates expression (3)
from o =0 to o = m/2. Letting m = k + (, this integration involves the factor
a2 o

[ tanae e da = fe_mxdx = -lie ™),
0

X

p
where /i(x) denotes the “logarithmic integral” defined by

X
dt
lix) = [— .
@) { Int
The light received by dV is then written as
—% F dvdplite ™) .
Next, Lommel notes that the luminosity (“Leuchtkraft”) F of the thin layer will be a function
of the depth »'of the layer below the surface because the light generating F by scattering in the
thin layer must first be transmitted from the surface to the depth of the thin layer; thus we have

F(r"). To get the total light received by dV at depth 7, he then integrates the last expression from
r" =0 to the bottom of the medium at depth »' = R. When the slab is above dV, p =r - 7" and

12



dp = -dr’; when the slab is below dV, p=7' - r and dp = dr’. The total depth integral is then the
sum of two parts:

r R
Ar) = —% fF(r’)lz(e 'm(’"’l))dr/ + fF(r’)lz(e 'm(’/"))dr/ . 4)
0 ¥

Here f(7) is the “total light amount per unit volume” received at depth » from all of the scattering
elements of the entire medium from depth 0 to R.

Lommel then notes that the light amount F(»’ ) emitted by the slab at #' comes from two
sources. The first is light directly transmitted from the surface to depth »’, and the second is light
that is scattered into the slab from the rest of the total medium. In the case that the incident light
is collimated with an incident angle within the medium of i from the normal to the surface and
with a magnitude a, then the directly transmitted term is

de ~(mr'lcosi) )

The directly transmitted plus scattered light at r’ is then

Fr'y = t[ae™ "™ + firh] . (5)

The scattering coefficient ( in the last equation determines how much of the light reaching the
layer at 7’ is then isotropically scattered into all directions. Inserting terms of the form (5) into
the Eq. (4) gives an integral equation for f{r):

f(r) — _%0 {f [ae -mr'/cosi + f(r /) ] li(e —m(r—r’)) dr/
0

R (6)
" f[ae -mr'lcosi f(r /) ] Zi(e —m(r’—r)) dr/} )
’
This equation is Lommel’s great achievement: an integral form of a radiative transfer equation.
He comments that “the function f{r) is of fundamental significance for theoretical photometry.”
But he also comments that “it does not seem possible, with the mathematical tools now at our
command, to obtain a solution (of Eq. 6) in closed form.”

Further comment on Lommel’s terminology can now be made. He calls a the “light amount
of a parallel ray bundle” (“Bezeichnet man...ein paralleles Strahlenbiindel ... Lichtmenge mit a”).
Equation (5) shows that function f{r) has the same units as a. So if we interpret Lommel’s “light
amount of a parallel ray bundle” to mean a collimated radiance with units of W m™ sr’, then Eq.
(6) is an equation for (isotropic) radiance. According to Eq. (5), F(r') is then the emitted
intensity (W sr™") per unit volume. If we interpret his “light amount” to mean a collimated plane
irradiance with units of W m?, then function f{r) would also be irradiance, and F(+') would then
have units of W m™, or power emitted per unit volume. In a sense it doesn’t matter which

13



interpretation we give to Lommel’s wording because he was assuming that the scattered light,
and the resulting light field, are isotropic. In the case of an isotropic radiance distribution,
radiance and irradiance differ only by constant numerical factors (with units of steradians): for an
isotropic radiance distribution of magnitude L, plane irradiance has magnitude L, and scalar
irradiance has magnitude 4nL .

Upon arriving at Eq. (6), we are only 6 pages into a 30 page paper. Immediately after
obtaining Eq. (6), Lommel writes

f(r) :fl(r) +f2(r) +f3(r) + .

where the terms represent higher and higher orders of scattering. He substitutes this expansion
into Eq. (6) and obtains a series of equations in which the left hand side involves f,(») and the
integral terms involve f, (). This is surely the first application of the successive-order-of-
scattering solution technique in radiative transfer theory. He computes the single-scattering term
f1(r) analytically, but comments that ““...we must to forego computing the higher order terms
because the integrals cannot be reduced to known functions.”

Lommel then uses his single-scattering analytical solution f,(r) to examine a number of
special cases including very thin slabs (R-0), very thick slabs (R~~), normal incidence, and near-
surface £,(0) and very deep f,(«) behavior. He uses the depth derivative d f,(r)/dr to show that
f1(r) has a subsurface maximum below which f,(») decreases monotonically.

He uses f,(r) to compute the total upwelling light incident onto the surface from the medium
below, which he denotes by L. I will omit showing his rather complicated formula for L; but [
will comment, based on my teaching experience, that almost no graduate student today could
carry out the required calculus. He notes that in the limit of a small value of ¢/(k + () and a large
R, his general formula for L depends only on the angle i of the light incident onto the medium,
the angle € of the upwelling light, and the ratio ¢/(k + (). In modern terms, the upwelling light
from a thick slab depends to first order (the single-scattering solution) on the albedo of single
scattering. He summarizes with the comment that these results “...give new formulas for the
emission by non-transparent bodies, replacing the cosine law of Lambert.”

He next uses his formula for L for the case of normal incidence i = 0 to evaluate the quantity
/2

M = 27I:fLSin8d8 )
0

He calls M “the light amount which streams out from a surface element into all directions of a
hemisphere.” He says that “for a unit of surface illuminated by a unit light amount, this

corresponds to Lambert’s concept of ‘albedo’.” He then evaluates M for the cases of collimated
illumination at an arbitrary incident angle i and for uniform illumination of the slab.

For the case of uniform illumination, he gets a result that “corresponds to Seeliger’s
definition of albedo” citing Seeliger (1886). The simplest of Lommel’s reflection formulas
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contain the factor
1 ¢ COSi cose

1 : ,
4w k+0 cosi + cose

(7

which Seeliger (1886) attributes to Lommel in his 1880 paper, with the further comment that
Lommel “recently” generalized his previous work and cites Lommel’s 1887 paper discussed here
for the theoretical foundation of the formula. Regardless of the apparent confusion on
publication dates, expression (7) is today known as the Lommel-Seeliger reflection law and is
still found in astronomy texts. It is solidly based on single-scattering theory and the assumption
of isotropic scattering.

To summarize Lommel’s contributions:

* He recognized that the albedo of a medium depends on its internal absorption and scattering
properties, not just on its surface reflectance properties.

¢ He made a clear distinction between the effects of absorption and scattering.

e He began with clearly stated axioms and derived an integral form of a radiative transfer
equation (RTE) that is still readily recognized as such.

* He recognized that a small volume of material both receives scattered light and is the source
of emitted light.

* He recognized the fundamental importance of his RTE.

e He formulated a solution algorithm for his integral equation that is now known as the
successive-order-of-scattering technique.

e He used the single-scattering solution of his RTE to evaluate the albedo of a scattering and
absorbing medium for a range of approximations.
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Chwolson. Orest Danilovich Chwolson (Opect
HanunoBud XBoibcoH in Cyrillic) (1852-1934) was a
Russian physicist. He is best remembered today as the
being the first to predict the possibility of gravitational
lensing or the “halo effect” on the appearance of
distance galaxies, today called Einstein rings.

Chwolson is one of those unfortunate Russians who,
like Nikita Khrushchev (Xpymés) is doomed to have
his name forever mispronounced by English speakers.
The Cyrillic “X” is pronounced something like a
gutteral, aspirated English “H”, and the “B” has a “V”
sound. Then there is the problem of the Russian “hard
L” 1 vs the “soft L” nb. It’s hopeless. By the current
US Library of Congress transliteration conventions, his
name would be spelled Khvol’son, but the closest
English sound might be Hvolson. He published the
paper discussed below in German, with the spelling Public domain image from
Chwolson, so that’s what I’ll use here. In German the https://commons.wikimedia.org/
“Ch” would have a “K” sound, and the “W”” an English wiki/File:Orest_Khvolson.jpg
“V” sound, so the Germans of 1889 probably called

him Kvolson.

In 1889 Chwolson published a paper titled “Grundziige einer mathematischen Theorie der
inneren Diffusion des Lichtes” (Foundations of a mathematical theory of internal diffusion of
light) in the Bulletin de L’Académie Impériale des Sciences de St. Pétersbourg. Most papers in
that tome are in French, as was the custom for intellectuals in Imperial Russia, but Chwolson’s
paper was in German. The title has an interesting footnote by the Editor of the Bulletin dated
July 4, 1889, which reads in part (my translation)

The present treatise was submitted to the Academy in the autumn of 1885, but was then
withdrawn by the author in order to make another attempt at a complete solution of the main
equation, and was then resubmitted almost without change in the autumn of 1888. Because of
the appearance in the meantime of a treatise dealing with the same subject by Lommel
[referencing Lommel’s 1889 paper], the above explanation seemed necessary to me.

In other words, as will be seen below, Chwolson derived in 1885 an integral form of the RTE
that is essentially the same as Lommel’s Eq. (6) seen above, but Chwolson withheld publishing
his result in order to work more on the mathematics of solving the equation. He then resubmitted
his paper just after Lommel’s work appeared (first in the 1887 Proceedings of the Bavarian
Academy of Science, and then in the 1889 Annalen der Physik und Chemie paper). Thus,
Chwolson may have been the first to derive an integral form of the RTE, but Lommel was first to
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publish and now gets the recognition. Lesson learned: if you have something good, don’t sit on
it.

Chwolson employed the same plane parallel geometry as Lommel and made essentially the
same physical and mathematical analysis of how light is absorbed and scattered within a
medium. He was specifically interested in the optics of opal glass (“Milchglas” or “milk glass”
in German). He starts with a discussion of the angular distribution of light by a single spherical
particle in the geometric optics approximation. After considering multiple scatting he argues that
it is reasonable to assume isotropic scattering (in modern terminology). He even comments on
polarization and argues that it can be neglected because of the depolarization effects of multiple
scattering.

~ dv 0 .
os— P

- _ /] [ ¢

T

A C 8
x a<
R
\
M e
Fig. 2. Fig. 8.

Two of Chwolson’s figures corresponding to the geometry used by Lommel, but with slightly
different notation.

Chwolson eventually arrives at an integral equation for f{a), which he calls the
“Lichtintensitét,” or “light intensity,” at depth a below the surface:

a h
fla) = e ~ L [ i) opa-pr)ds ~ LX [fix) olpr-pa) d. ®)
0 a

Here £ is the thickness of the slab and a is the depth of the point of interest within the medium.
For light normally incident onto the slab, a is the absorption coefficient due to the particles that
are causing the scattering, and p is the sum of the particle and the background-medium
absorption coefficients. Chwolson says that it can be assumed that a = p with negligible error in
most cases (i.e., the background medium can be assumed non-absorbing). The coefficient K < 1
is the albedo of single scattering, which Chwolson calls “the albedo of the particles” (“das
Albedo der Theilchen). Thus a and K are the IOPs under the assumption of isotropic scattering.
Finally, o(x) = li(e™) is the same logarithmic integral seen in Lommel’s equation.
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After obtaining this integral equation, Chwolson says “So far I have not succeeded in
calculating the function f{a) for arbitrary values of p, K, and 4.” 1In a different place he says, “...a
complete solution of the problem does not appear possible....”

Equation (8) as shown above contains the essence of Chwolson’s development. However, he
also developed a more general version of Eq. (8), which includes a term representing the
contribution to f{a) due to the internal reflection of scattered light by the boundaries of the slab.
That reflection is described by integrals over direction of the Fresnel reflectance, including total
internal reflection at some angles. He points out that the exp(-pa) term must be replaced by exp(-
palcosP) if the incident light is at an angle B to the normal to the slab.

In the remainder of his paper, Chwolson considers various special cases for which Eq. (8) can
be solved analytically, at least approximately. In particular, he considers the light field deep
within the medium far from the slab boundaries, i.e., at asymptotic depth. His analysis of that
problem leads him to exactly the same equation for the asymptotic diffuse attenuation coefficient
K. as is seen on page 469 of Light and Water (Chwolson’s Eq. 26, with modern notation):

® 1+,
1=—1In ,
2%, 1,
which Chwolson says can be solved to obtain k.. He goes on to show that “The same amount of

light penetrates to equal optical depths px in all gray materials.” His “gray” materials are ones
with K < 1; a non-absorbing “white” material has K = 1 (his K is my o).
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Schuster. Franz Arthur Friedrich Schuster (1851-1934)
was a German-born physicist who spent most of his career at
the University of Manchester in England. He made
significant contributions in many areas, including
spectroscopy, optics, x-ray imaging for medical diagnosis,
and radiative transfer, and he pioneered the use of harmonic
analysis (Fourier analysis) to search for “hidden
periodicities” in natural phenomena such as weather and
earthquakes. He invented the concept of antimatter in two
letters to Nature in 1898, one of which asked “If there is
negative electricity, why not negative gold, as yellow as our
own?”

Public domain photo from
https://en.wikipedia.org/wiki/Arthur_Schuster

In 1905 Schuster published (in English) his most famous paper, “Radiation through a foggy
atmosphere,” which addressed the problem dark and bright spectral lines in stellar atmospheres.
He starts by saying that “In discussing the transmission of light through a mass of gas, it us usual
to consider only the effects of emission and absorption, and to neglect the effects of scattering.”
He then says, “I call an atmosphere ‘foggy’ when scattering takes place to an appreciable extent.”
The problem attacked in this paper was to explain the “dark line” and “bright line” spectra seen
in radiating gases such as the sun.

Using simple heuristic arguments and assuming equal amounts of scattering in the forward
and backward directions (such as for an isotropic or a Rayleigh phase function), Schuster derived
a pair of equations for the energy A4 traveling in direction +x and the energy B traveling in the
opposite -x direction:

%—‘%éx(E;A)+§s(B—A)
9B (B—E) +1(B—4)

In modern terminology, these are precisely the two-flow equations for £, (4) and E, (B) as seen
in Light and Water Eqs. (5.54) and (5.55), with «k as the diffuse absorption coefficient, s/2 as the
diffuse backscatter coefficient, and k£ as the internal source function, where E is the blackbody
emission function. (Schuster assumed that Krichhoff’s law holds, namely that in thermal
equilibrium the absorptivity of a material equals its emissivity.) In order to have tractable
mathematics for an analytical solution of the equations, he restricted himself to the assumption
that (in modern terminology) the radiances are hemispherically isotropic, but that the radiances in
the upward and downward hemispheres are not of equal magnitude. He recognized that this
assumption oversimplifies reality and commented, “The complete investigation leads to
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equations of such complexity that a discussion becomes impossible, and I shall only use the
solution obtain under the simplified conditions to deduce certain consequences which cannot be
affected by the assumption made.”

The remainder of the paper then solves the two-flow equations with suitable boundary
conditions (no energy incident onto the “top” of the medium; a known amount of energy incident
from the “bottom” of the medium). He assumed either a constant source term E, or a linear
dependence of £ on depth. In his application, £ is the temperature-dependent blackbody
emission within the stellar atmosphere, so a linear £ corresponds to a linear temperature profile
(increasing with depth) in the stellar atmosphere. These E functions allowed him to solve the
two-flow equations analytically. The result was that the equations can generate either a bright or
a dark emission line against the background, depending on the relative importance of the
absorption and scattering terms in the two-flow equations and on the strength of the emission
within the atmosphere compared to the irradiance incident from below (from deeper within the
sun). He showed that scattering is crucial to understanding dark and bright emission lines. The
spectrum would be that of a blackbody if scattering is ignored and the medium is optically deep.

The 1905 paper discussed here is often cited as the foundation paper of RTT (by those of are
unaware of Lommel and Chwolson) because of its application of the two-flow equations to the
quantitative understanding of stellar spectral lines. However, Schuster actually presented the two
flows equations themselves in an earlier paper, Schuster (1903; Eq. 24 in that paper). The
equations were used to discuss the transfer of heat in the 1903 paper.
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Planck. Max Karl Ernst Ludwig Planck (1858-1947) was
a German physicist. Planck was a gifted musician and
even composed operas. His physics professor in school
advised him not to go into physics because “...in this field,
almost everything is already discovered,....” Fortunately,
Planck ignored this advice and chose physics over music,
and the rest is history.

Planck is best known for his 1900 derivation of the
blackbody radiation law (published in 1901), which
required the assumption that energy is emitted in discrete
quanta. This was the beginning to quantum theory. He
received the 1918 Nobel Prize in Physics for that work.

Public Domain photo from https://commons.wikimedia.org/w/index.php?curid=20429172

In the winter semester of 1905-06, Planck gave a series of lectures at Berlin University on the
theory of heat radiation. He then collected the material of these lectures, along with background
material and other results of his work of the previous few years, and published them in book
form as Vorlesungen tiber die Theorie der Wirmestrahlung (Lectures on the Theory of Heat
Radiation; Planck, 1906). The introductory chapter of this treatise is the first place I’ve found
that defines radiance in a thoroughly modern and recognizable form.

The figure below shows part of page 15, where he defines the element of solid angle (in his
Eq. 5) and then radiance K (in his Eq. 6). The radiance is defined in the context of the energy
that passes through a surface element do in time dt in a solid angle dQ centered on directions (U,
¢). Planck calls K the “specific intensity” (spezifische Intensitit) or the “brightness”
(Helligkeit). The element of solid angle dQ is called the “opening angle” (Offnungswinkel) of a
cone. He then defines the plane irradiance (the Gesamtstrahlung or “total radiation”) passing
through a surface for an aribtrary radiance distribution. Finally, in his Eq. (7), he shows that the
“total radiation” is 7K if the radiance K is the same in all directions. You don’t have to know
German to recognize these equations and what they are defining.

The remainder of Planck’s 1906 treatise discusses the physics of heat radiation from the
standpoint of thermodynamics and Maxwell’s equations, rather than via a radiative transfer
equation. His contribution to RTT for my present purposes is therefore his formulation of the
concept of radiance, or specific intensity as it is still called in some fields. His blackbody
formula of course becomes a source term in the RTE if thermal emission is important (as in
stellar atmospheres at visible wavelengths, or at thermal IR wavelengths here on Earth).
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fortpflanzt., Die 'I'jﬂ‘nung_ dieses Ke'g’els ist:
dﬂ:ﬁinﬁ"dﬂ‘-dfp. (5}
Auf diese Weise erhalten wir fiir die Energie, welche in

der Zeit d¢ durch das Flichenelement d# in der Richtung des
Kegels d £2 hindurchgestrahlt wird, den Ausdruck:

dtdo cos# dQ K = K sin & cos & d& dp do dt.  (6)

Die endliche GréBe K nennen wir die ,spezifische Intensitiit«
oder auch die ,Helligkeit*, d 2 den ,,ﬁﬂ'nungawinkal“ des von
einem Punkte des Elementes do in der Richtung (&, ¢) aus-
gehenden Strahlenbiindels. K ist eine positive Funktion des
Ortes, der Zeit und der beiden Winkel # und ¢. Die spezi-
fischen Strahlungsintensitiiten nach verschiedenen Richtungen
sind im allgemeinen ginzlich unabhiingig voneinander. Setzt
man z. B. in der Funktion K fiir ¢ den Wert # — &, und fiir ¢
den Wert # + ¢, so erhilt man die spezifische Strahlungs-
intensitit in der gerade entgegengesetzten Richtung, eine im
allgemeinen von der vorigen ganz verschiedene GrébBe.

Die Gesamtstrahlung durch das Flichenelement d ¢ nach
einer Seite, etwa derjenigen, fiir welche der Winkel  ein spitzer
ist, ergibt sich durch Integration iiber ¢ von 0 bis 2a, und

iiber ¢ wvon 0 bis g—:

EE a2

qu)fd.‘} K sin & cos & do di.
0 0

Ist die Strahlung nach allen Richtungen gleichmiBig, also K
konstant, so folgt hieraus fiir die Gesamtstrahlung durch do
nach einer Seite:

% Kdo dt. (1)

Part of page 15 of Planck (1906) showing his formulation of radiance and its use in computing
the plane irradiance.
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Schwarzschild. Karl Schwarzschild (1873-1916) was a
German physicist and astronomer. He is best remembered
today for obtaining the first solution of Einstein’s equations
of general relativity. That solution yielded the radius of the
event horizon of a black hole for a non-rotating sphere, now
known as the Schwarzschild radius. Amazingly, he someway
found the time to work out that solution in 1915 (as well as to
write a second paper on general relativity and one on
quantum mechanics in the same year) while serving in the
German army as an artillery lieutenant. He died the next year
from a rare skin disease that developed while at the Russian
front.

Public domain photo from Wikipedia

In 1906 Schwarzschild published a paper “Ueber das Gleichgewicht der Sonnenatmosphére”
(On the equilibrium of the solar atmosphere) that began by combining Schuster’s two-flow
equations with elementary gas thermodynamics and hydrostatics. He used the resulting equations
to study the concept of “radiative equilibrium” (Stralungsgleichgewicht), a term he introduced,
meaning that the transfer of energy from deeper in the sun to the surface is by thermal radiation,
rather than by convection (movement of matter in convective or adiabatic equilibrium, which is
the case in the Earth’s atmosphere).

He first solved the two-flow equations for temperature lapse rates (the rate of change of
temperature with depth in the solar atmosphere) corresponding to both adiabatic (convective) and
radiative equilibrium. This analysis showed that the Sun’s atmosphere could at least
theoretically be in radiative equilibrium.

He then derived a differential equation for the radiance as a function of depth and direction
under the assumption that the sun’s atmosphere only absorbed and emitted by blackbody
radiation; scattering was neglected. This equation (18) and its formal solution for the radiance
leaving the solar surface (20) are seen in the figure below:
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Strahlung. Man erhilt daher fir F' in villiger Analogie za (8)
die Differentialgleichung:
dF a

(18) dah n_cosi(E_F)
oder: e ‘
= s E
wenn man die Abkiirzung:
A
(19) B o= f«dﬁ

=

einfilhrt. Die Integration ergiebt fiir die aus der Atmosphire
austretende Strahlung:

m »
(20) F() =f Ec_'“ﬂe{'“dpmi.
0

Es libt sich also F(i) berechnen, sobald man die Temperaturver-
teilung lings der Vertikalen und damit E als Funktion von g
kennt.

Part of page 49 of Schwarzschild (1906). F(h,i) is the upwelling radiance at depth h below the
top of the Sun’s atmosphere (photosphere) and polar angle i from the normal (0 < i < 90 deg); a
is the absorption coefficient. E(h) is the isotropic blackbody source function, which is a function
of the temperature T(h). Schwarzschild’'s Eq. (18) is exactly what is seen in Light and Water
Eq. (8.30) for the upwelling radiance in the case of no scattering. Equation (20) gives the
radiance leaving the Sun’s surface as a function of polar angle i.

Schwarzschild evaluated his Eq. (20) for temperature profiles 7(/4) (which determine the
blackbody source term E as a function of depth in the solar atmosphere) corresponding to either
convective or radiative equilibrium of the Sun’s outer atmosphere. These evaluations give an
angular dependence of the radiance (normalized to 1 at the Sun’s center) leaving the top of the
Sun’s atmosphere to be

1+2cosi
3
(cos)* ™™V for convective equilibrium (Schwarz. Eq. 29),

for radiative equilibrium (Schwarz. Eq. 28)

F(i)

where i is the angle from the normal, and vy is the “head capacity ratio” or “insentropic index”.
The constant y depends on the degrees of freedom in the gas molecule: y=5/3 for a monoatomic
gas, y = 7/5 for a diatomic gas, and so on.
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His paper closes with the table seen below, which compares the predictions of his Egs. (28)
and (29) with measured radiances across the sun’s diameter. This comparison supports his
hypothesis that the Sun’s photosphere is in radiative equilibrium.

R
& S & &
Y nF 0 230
& L S
< & &
B i o 30
r | Stmhlungs—‘ Adiabat.
& [Messung.d "o i chgew. |Gleichgew.
e EPTNENN ¥-mi Ik
Sun’scenter 0.0 1.00 ‘ 1.00 } 1.00
02 | 099 | 0.99 | 098
0.4 0.97 0.95 0.92 .
0.6 0.92 0.87 0.80 Schwarzschild’s table (annotated) of
0.7 | 087 0.81 | 0.71 normalized radiances across the Sun’s
gg 8% gzg | 32&; image as computed for temperature
096l 059 | 0.52 | 028 profiles corresponding to radiative and
098l 049 ! 047 | 0.20 convective equilibrium, compared with
Sunslimb  1.00{ (0.40) ﬂ 0.33 | 0.00 measurements.

Schwarzschild recognized the crudeness of the assumptions in his 1906 paper and stated in
the introduction that “The whole analysis can by no means be considered conclusive or
compelling, but it may lead to further speculation by first expressing a simple thought in the
simplest form.” There is no better way to state the value of a first-order model.

In 1914 Schwarzschild returned to this topic in a second paper, “Uber Diffusion und
Absorption in der Sonnenatmosphére” (Scattering and absorption in the Sun’s atmosphere). In
this paper he worked with radiance “...in a manner analogous to that of Planck” (1906). He
developed a pair of RTEs for upwelling and downwelling radiances, including the contribution of
isotropic scattering. These equations are exactly the pair of equations seen in Light and Water
Eq (8.30), for the case of isotropic scattering.

He then used equations to simulate the changes observed in two of the Fraunhofer lines of
calcium in the solar spectrum as the viewing direction moves from the center of the Sun to the
limb. In order to solve the equations analytically, he considered only two extreme cases: that of
absorption and emission (as in his 1906 paper), and that of only scattering (i.e., with no
absorption or emission within the layer being viewed; the blackbody radiation enters the layer at
the lower boundary). He found that the solution for only scattering gives a better agreement with
observation than the assumption of absorption and emission without scattering. He also
evaluated the numerical magnitude of the errors on Schuster’s 1905 paper resulting from
Schuster’s assumption that the radiances were isotropic in the upward and downward
hemispheres.
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King. Louis Vessot King (1886-1956) was a physics
professor at McGill University in Montreal. His obituary
(Foster, 1957) called him a “Gifted inventor and foremost
mathematical physicist in Canadian history” and an
“immortal among Canadian scientists.” Much of his
research was on submarine acoustics (during WWI) and on
heat transfer. He invented the hot wire anemometer.

Photo from Foster (1957)

In 1913 King published a long paper (King 1913a, 1913b) “On the Scattering and Absorption
of Light in Gaseous Media, with Applications to the Intensity of Sky Radiation.” He begins by
noting that “Each element of volume will scatter a certain proportion of the radiation incident
upon it, so that each element besides being illuminated by the incident radiation is also subject to
the aggregate radiation from all the other elements within the surface %, i.e., to the effect of self-
illumination.” (italics his). He then derived an integral equation for the radiance:

obtain the following sntegral equation for the scattered radiation at and from any
point,

I(z,%,2,0,6) = wu(8)E (x,y,2) + j “ (;‘;’) I(,y,2,0,6) ok de', . (14)
=

In this equation, radiance /(x,y,z,#,0) is the radiance in direction 0 at distance » from the point of
interest at (x,y,z). E is the irradiance reaching point (x,y,z), and Ww(0) is a function that scatters the
irradiance £ into radiance / in direction 8. His K in the exponential is clearly described as the

sum of absorption and scattering coefficients (in modern terminology). His #(rt’) factor is the
volume scattering function (VSF). His Eq. (14) is notable in that the VSF is arbitrary, so this is
the first formulation of an RTE that does not begin by assuming isotropic scattering, or

something similar. King then compares #(t1’) with the Rayleigh VSF, which is proportional to
(1 + cosh), and later takes #(rT’) to be isotropic for numerical calculations.
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King the mathematician notes that his Eq. (14) “is of the Fredholm type”, which in general
has the form

u(x) = fx)+ f u(8) K(x,8) dg .

He then comments that “except for special forms of the kernel K(x,&),” such equations “do not
lend themselves easily to numerical evaluation.” He then goes on to develop approximate
solutions of his Eq. (14) under various assumptions to obtain an approximate formula for the
radiance of the sky viewed in any direction. After 15 pages of math, he notes that his solution for
the sky radiance contains terms that “represent the contribution of self-illumination to the
scattered radiation coming from any particular direction. An evaluation of this effect has not, so
far as the writer is aware, been submitted to calculation although the importance of the effect is
realized both by Kelvin and Rayleigh, and in an analogous problem by Lommel.” A footnote
then references Lommel (1887) and notes that Lommel’s problem “...is included as a particular

case of the investigation of the present paper.” This is the last reference I have found to Lommel
until 1980.
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Milne. Edward Arthur Milne (1896-1950) scored the
highest score ever made (up to that time, at least) on his
entrance exam in math and natural science at Cambridge
Univ in 1914. He became a distinguished mathematician
and one of the founders of modern theoretical astrophysics.

In the 1920s, he focused on the thermodynamics and
radiative properties of stellar atmospheres. “Milne’s
Problem,” as it is now known, is to find the radiance
leaving the surface of a semi-infinite, plane-parallel,
isotropically scattering atmosphere that is in radiative and
thermodynamic equilibrium. Solving this problem is the
key to understanding limb darkening of the sun, which was
the third research topic listed above. This is the same
problem first addressed in Schwarzschild’s 1906 and 1914
papers.

Photo from
https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/
milne-edward-arthur

In 1921 Milne published a classic paper on the problem of limb darkening. He recognized
that when viewing the sun a different angles from the local normal, the radiance comes
predominately from different depths within the solar atmosphere and is attenuated along different
slant paths through the atmosphere, as illustrated below. Different depths within the solar
atmosphere are at different temperatures (with temperature increasing going into the sun), so the
blackbody radiation will shift to the red for the cooler, near-surface temperatures seen at near-
grazing angles.

Geometry of Milne’s analysis. The dots

7777 represent one optical attenuation length
from the surface as seen along various
paths. (Figure from Chandrasekhar
(1980).)
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Milne assumes a plane parallel solar atmosphere, with depth x being measured inward into
the sun from x = 0 at the solar surface. Polar angle 0 is measured from the -x direction, so that at
x = 0 polar angle 0< 6< 7/2 is radiance leaving the Sun’s surface, and n/2 < 6 < 1 is radiance
incident onto the Sun’s surface. The opening section of this paper then shows the following:

absorption, supposed independent of wave-length. Lastly, let B
(a function of ) be the intensity of black-lody radiation corre-
sponding to the temperature of the matter at any peint ». Dy
Kircholl’s law the emission per unit volume in all directions at
any point x is 4whpB. | Dy considering in the usual way the gains
and losses ol a narrow pencil of radiation during a short stretch
of its paths, it is found that I must satisfy the equation

mﬂ’“-;ﬁ-,,{r—m_ N ()
”'r.{. L 1

Setting

T=J kpd.r,

equation (1) becomes

::056‘”!]'= [- DB

T

So, by 1921 the RTE in a recognizable, modern form was well enough known that Milne felt no
need to derive it (as did Schwarzschild), but could just state that “...considering in the usual way
the gains and losses...” gives the equation with which he will work.

For completeness of these notes, it is worthwhile to outline Milne’s development of his Eqs.
(1) and (2). In Eq. (1), p is the density [kg/m’], and & is the “coefficient of mass-absorption”.
According to Eq. (1), kp must have units of the modern absorption coefficient [1/m], so we
recognize k as a mass-specific absorption cross-section with units of m*/kg. Milne assumed that
k was independent of wavelength, and he called / “the intensity of radiation of all wave-lengths”,
so he is thinking of 7 as broad-band radiance with units of W/(m? sr), not spectral radiance or
specific intensity. The blackbody source term clearly B has the same units as /. Kirchoff’s
radiation law states that in thermodynamic equilibrium, the rate of energy absorption must equal
the rate of energy emission into all directions at a point X. The rate of absorption of radiant
energy [Joules per second or Watts] per unit volume is

2w

kp{{lsinﬁ dbdo = 2nkp£lsin9 dd do W

m

where the second equation results from the assumption that the radiance distribution / is
azimuthally isotropic. The rate of emission of isotropic blackbody radiation into all directions
[4m sr] is 4mkpB. Equating these expressions for the rate of absorption and the rate of emission
gives the condition for radiative equilibrium:
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2B = f Isin® do . (Milne Eq 3)
0

Milne then states that the problem is to solve Eq. (1) subject to the requirement of Eq. (3) and the
boundary condition /(x = 0, 8) = 0, for /2 <0 < m, 1.e. the boundary condition that there is no
incident radiance at the solar surface.

After taking into account the sign change of cos for upward (cos6 > 0) and downward (cos6
< 0) radiances, Milne writes the “formal solution” of Eq. (2) as

I(1,0) = e™® f B(f) secB e 75 gt for 0<6<m/2 (Milne Eq. 17)

T
I(t,y) = e " [ B(t)secy e **Vdt for m/2<B<m or O<y<m/2 (Milne Eq. 18)
0
Of course, these equations do not immediately give the radiances because the depth distribution
of the blackbody source term is unknown until the depth distribution of temperature within the
solar atmosphere is specified (the blackbody emission depends only on the temperature). Note,
however, that Eq. 18 evaluated at T = 0 gives 0, which satisfies the boundary condition of zero
incident radiance. Equation (17) shows that the radiance leaving the surface at 1 = 0 depends on
the depth profile of the temperature 7(t) via B(7(t)) weighted by an exponential function of depth
and direction. Milne then inserts his formal solutions for 7, Egs. (17) and (18), into the condition
for radiative equilibrium, his Eq. 3. This gives an integral equation for the depth distribution of
B:
2 o
2B(t) = f e ™ 5inf 40 f B(f) secO e 5 dr
T

0
n/2

T
+ [e ™V siny dy [ B(t) secy e "V dt (Milne Eq. 19)
0 0

After a good bit of calculus, he finally transforms this equation into

B@ = - [BO) Ei(t~<) (Milne Eq. 47)
0

where Ei is the exponential integral defined by

Ei(z) = f e’ dy .
Y
Equation (47), now called “Milne’s equation” allows the blackbody function, hence the
temperature, to be determined as a function of depth within the solar atmosphere, for the
assumptions of the derivation. Once B(t) is known, this source function can be inserted into
Milne’s Eq. (17), evaluated at T = 0, to determine the radiance distribution leaving the Sun’s
surface. This /(0,0) can then be compared with measurements of the solar limb darkening, as
was done by Schwarzschild.
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Of course, in the pre-computer days of a century ago, Milne’s Eq. (47) had to be solved by
pencil and paper. Milne developed a method of successive approximations starting with a first
approximation of the form B(t) = a + 2bt, where a and b are constants to be determined by the
requirements of radiative equilibrium and the total flux emitted by the Sun. He compared his
solution with those of Schwarzschild and showed that the Milne prediction of 7(0,0) gave a
somewhat better agreement with observation than did the models of Schwarzschild (or of
Eddington and Jeans, who were also working on this problem). The importance of Milne’s
equation in astrophysics is so great that it spawned a cottage industry developing mathematical
ways to solve the equation (e.g., Hopf, 1934), and papers are still being published today on
numerical techniques for solving Eq. (47).

It must be remembered that Milne’s Eq. (47) was derived for a semi-infinite, homogeneous,
plane-parallel medium with isotropic scattering. That will take you a long way in studies of
stellar atmospheres, but no where at all in studies of the ocean, where phase functions are highly
peaked in the forward direction. That’s why you don’t see equations like this in Light and Water.
Nevertheless, this equation was a major advance in RTT.
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Gans. Richard Martin Gans (1880-1954) was a
German-born and -educated physicist who spent most of
his scientific career at universities in Argentina. He is
best remembered today for his solutions of Maxwell’s
equations for scattering by prolate and oblate spheroids
(corresponding to Mie’s solution for spherical particles)
and for the Rayleigh-Gans approximation for scattering
by “optically soft” particles.

Photo from Swinne (2017)

In 1924 Gans published a paper “Die Farbe des Meeres” (The Color of the Sea). This is the
first radiative transfer paper I’ve found that refers to the sea. Gans opens by commenting on C.
V. Raman'’s correction of Lord Rayleigh’s infamous statement that “The much-admired dark blue
of the deep sea has nothing to do with the colour of water, but is simply the blue of the sky seen
by reflection.”

1924. M 17,

ANNALEN DER PHYSIK.

VIERTE FOLGE. BAND 75.

1. Die Farbe des Meeres;
von R, Gans,

Der Meinung Lord Rayleighs?l), daB die dunkelblaue
Farbe der tiefen See sich einfach durch Reflektion des blauen
Himmels erklirt, stelite Raman?) die fraglos richtige Behaup-
tung gegenliber, daB die Erscheinung durch molekulare Zer-
streuung des Sonnenlichts (Tyndalleffekt) an den Wasserteil-
chen hervorgerufen wird, wobei aber die wahre Absorption des
Wassers wesentlich mitspielt. Diese Gedanken hat Ramana-
than? auf Anregung Ramans weiter verfolgt.

The first paragraph of Gans’
paper on the color of the sea.
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Gans then says he wants to take a more thorough look at the problem than has been done
previously, namely to account for radiance incident onto the sea surface at an arbitrary angle to
the zenith, radiance exiting the sea surface at any angle and, most importantly, to account for
polarization. Unlike any previous paper discussed here, Gans worked entirely with electric fields
in his very mathematical paper. This is not surprising, given his expertise at solving Maxwell’s
equations. He resolves the state of linear polarization into components parallel and perpendicular
to the meridional planes of the incident and scattered radiances. To obtain irradiance, he
evaluates the Poynting vector using his computed electric fields.

Gans first obtained a solution for the electric fields of the light within and leaving the water
in the single-scattering approximation. For example, his equations for the components of the
polarized specific intensity (radiance) K perpendicular (subscript s, for senkrecht) and parallel
(subscript p) to the final meridional plane, for the case of incident light polarized parallel to the
incident meridional plane (Fall p, meaning Case p) are

ist, so ergibt sich fiir die spezifische Intemsitit K in Luft:

K 8 h  Jydy(0)d,(6) cosfcos® & sin'e

¢ = 16n h+ I n’ cosf +cosd ! -
(22) | " ! (Fall p)
K = 3 _h i J_dLiE}d,[B‘) maﬁcna‘q- )
P 16z h+ K n! cos ff + cos

A similar pair of equations gives the radiance components for the case of the incident light
polarized perpendicular to the incident meridional plane. In these equations, J, is the magnitude
of the incident radiance, d(®) and d,(®) are functions of the incident and final angles, and n is
the index of refraction of the water. These equations involve a factor 4/(h + h"), where Gans
calls 4’ “true absorption” and / “the coefficient of apparent absorption generated by scattering of
the light” (i.e., the scattering coefficient); he calls 4 + A’ the extinction coefficient. His ratio 4/(h
+ h') is the albedo of single scattering ®, in modern terminology.

Gans then notes that, for a given spectrum of the incident radiance J,, the wavelength
dependence of the water-leaving radiance determined by the 4/(h + h') factor, except for a weak
wavelength dependence in the index of refraction n. He then asks how the ocean would look
“...1f the water had no true absorption (4’ = 0), but only extinction as a consequence of light
scattering. Then A/(h + h") would equal 1, and the wavelength dependence would disappear from
our formulas, except for the inconsequential dispersion in n. The backscattered light would
therefore be white.” (if J, is a white light spectrum). He then concludes (italics his), “We can
therefore say: That the ocean sends out diffuse light at all is due to molecular light scattering;
that this light is blue is explained by the true absorption in the red, yellow, and blue.”

Gans then acknowledges that his single-scattering solution is valid only for small values of
h/(h + h'"). He then develops a “rigorous formulation of the problem.” After many pages of
math, he eventually arrives at a pair of coupled, inhomogeneous, linear, differential-integral
equations for the parallel and perpendicular components of the radiance. These equations, along
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with suitable boundary conditions at the sea surface and bottom (at depth «), determine the in-
water radiance distribution. He then devotes another 8 pages to approximate solutions of these
equation using power series expansions in the parameter 4/(h + h"). The math gets progressively
uglier, with little gained for the physics, which was extracted from the single-scattering solution.
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Gershun. Andrei Aleksandrovich Gershun (Russian:
Anpnpeit Anexcanaposud ['epmryn) (1903-1952) was a
Russian physicist who did much work in photometry,
colorimetry, and optics. He is regarded both as the father of
what might be called “lighting technology” and as the father
of Soviet optical oceanography. Although he published over
90 papers and books, he is known in the west for Gershun’s
law and for the Gershun tube radiometer.

Photo from https://ru.wikipedia.org/wiki/
lepwyH, AHOpen_AnekcaHaposud

In 1936 Gershun published a paper, OCHOBHBIE MPEACTABICHUS TEOPUU CBETOBOTO

MOJISL (BEKTOPHBIE METOABI CBETOTEXHUYECKOIro pacueTra) (Fundamental Ideas of the
Theory of Light Fields (Vector Methods of Light Calculations)) (Gershun 1936a). The title lines
of this paper are seen below.

A ABERERHEY I
AW AR b ITEE T EY Y YR O RIS AR 744 YR Oh 1 VY3 b N ) \ Tr Y <}
CCIHOBINLIE UPERCTABNERNS TROPHIL CBETOROT'G IO
(f‘“ﬂ,"l."l'('l;r!i":.!(‘. METOJb) CRCTOTCXNHUCERGIO ]5:. L Ei)

The heading of Gershun’s 1936 lzvestia paper. Preisendorfer’s files contained only two nearly
illegible pages of this paper: the cover page and the page with Gershun’s equation, seen below.
| have been unable to find the full version of the original paper, which as far as | know has
never been translated into English.

The figure below shows the page of the 1936 Izvestia paper showing the divergence of the

vector irradiance equal to the the negative of the absorption coefficient times the scalar
irradiance: this result is now known as Gershun’s equation or Gershun’s law.
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AR, HampuMep, B ciaydac uowiouiaoieil .cpeao dives <o, Jlpe
OCTIOBHEIE XAPARTEPHCTURH CBETOBOLO IO ¢BABANLL B DTOM CIyUae cle-
JLY IO COOPHOTITCHTIEM:

f{‘

(o) :1; — KODPOUITICUT HOMHOTI(SIT 7._
The presentation of Gershun’s equation in the 1936 |zvestia paper.

Gershun also published a book in 1936, CB€TOBOTO 110J14 (The Light Field) (Gershun
1936b). The importance of that book was apparently immediately recognized because it was
translated into English and published in the U.S. in 1939 as The Light Field (Gershun, 1939).
Gershun’s goal in this book was to formulate a physical and mathematical treatment of the light
field in the same manner as is used for electric or gravitational fields. He thus carefully works
his way through definitions of the fundamental physical quantities and develops mathematical
relations among those quantities using the same vector calculus that is applied to other vector and
scalar fields. His development has a level of logical and mathematical rigor that is similar to the
much later works by Preisendorfer. Gershun also discusses ways to measure the radiometric
quantities he defines—he is, after all, the inventor of the Gershun tube radiometer.

Gershun defines a scalar quantity that he calls the “space illumination;” this is the scalar
irradiance in modern terminology. Gershun’s “light vector” is what is now called the vector

irradiance (symbol £ inthe equation above, D in the equation below). He states that “These two
quantities are the fundamental functions of position in the light field.” Only after 103 pages of
development does he arrive at the relation between the space illumination and the light
vector—namely his eponymous equation. In his book he defines a quantity f'as “the space

density of light, produced per unit time” and notes that “If we deal with absorption rather than
emission, the values of /' will be negative.” He then presents the equation

f=divD (Gershun Eq. 65)
and states “The space density of light, produced (or absorbed) per unit time, is equal to the
divergence of the light vector.” (his italics) This is the form of the divergence equation in the
book. It includes the form shown in the Izvestia paper if absorption is the physical process
changing the space illumination, in which case f = —k&,

Gershuns’s book is of historical significance for the development of RTT because it was the
first serious attempt to place radiometry on a firm physical foundation. That is to say, its goal
was to make a previously phenomenological theory a part of physics. (A phenomenological
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theory mathematically describes observed physical phenomena without connecting the
description to fundamental physics. A phenomenological theory is usually developed using
intuition based on observation and heuristic arguments. The resulting equations may give good
results, but sometimes not good understanding.) This is a topic to which we will return in the
last section of these notes.

Gershun published a number of other papers on optical oceanography, e.g. Berezkin,

Gershun, and Yanishevskiy (1940), “Transparency and color of the Sea." I am unable to find
these papers, but they would no doubt be of historical interest.
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Ambartsumian. Victor _ sy

=

Amazaspovich Ambartsumian
(Russian: Buktop AmazacnoBuu
AwmbapuymsH) (1908-1996) was
an Armenian/Soviet
astrophysicist who worked in
many areas. He is
internationally recognized as one
of the founders of modern

astrophysics. He is today a
national hero in Armenia, and
his picture is on the Armenian 100 dram note, seen here. The Armenian government today
awards a biennial Victor Ambartsumian International Prize, which generally goes to someone
who has greatly advanced astrophysics; the prize is currently worth US$300,000.

Ambartsumian spent the 1930s at Leningrad University working on astrophysical problems.
His amazing memoir (http://vambartsumian.org/) tells how he was awakened at 4 AM on June
22, 1941 by the sound of German bombers flying over Leningrad, when Germany opened its
surprise attack on the USSR. He was soon ordered to evacuate Leningrad, taking as much

equipment and scientific personnel as possible with him. On July 17 he and his family left
Leningrad in a railroad freight car, heading eastward. It took five days just to reach Moscow,
where he endured another night of German bombing. He eventually reached a small town in
what is today Tatarstan, where he spent the next four years working on problems of military
importance. It is to me almost incomprehensible, but even in the chaos of war and burdened by
his wartime duties, Ambartsumian someway found the time and mental discipline to publish
seminal papers in 1942, 1943, and 1944, which have had a major and long-lasting impact on
RTT.

These three papers revisited the problem of reflectance by optically thick atmospheres. This
was the same problem addressed by Lommel and Chwolson over 50 years before. However,
Ambartsumian developed an entirely new approach. The 1943 paper, “On the problem of the
diffuse reflection of light by a turbid medium,” was particularly elegant. It is only 6 pages, but
the development therein contains the seed of what today is the mathematical core of HydroLight.
Given that [ have spent much of my own career solving the RTE using a technique that traces
back to this paper, I will discuss it in some detail.

[Note: In oceanography, we use E for the plane irradiance. Astrophysicists often use nS for
the same quantity. This was apparently done so that for an isotropic light field of radiance L, the
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(http://vambartsumian.org/)

plane irradiance would have the same magnitude as the radiance (but different units of course).
For an isotropic radiance, you will see £ = L  in Light and Water, but n§=nL ,1.e.,S=L_ in
much of the astrophysical literature (e.g., Chandrasekhar, 1950, calls nF the flux; Ambartsumian
uses mS). One astrophysics text I consulted says the 7 is there “for historical reasons” and that ©tS
is called the “astrophysical flux.” (The astrophysicists also have an “Eddington flux” and a bunch
of other stuff that isn’t used in oceanography.) It’s just a matter of definitions, but it’s confusing
and a good way to lose factors of m when going from one field to another.]

The problem is to compute the radiance reflectance of an optically infinitely thick,
homogeneous, plane parallel, absorbing and scattering medium, given the inherent optical
properties of the medium and the incident irradiance. Ambartsumian defines this reflectance as

() = ﬁ‘(‘—g )

where 7S is the plane irradiance measured perpendicular to a collimated beam incident onto the
surface of the medium at a polar angle given by cos™(€), and I(n,€) is the radiance leaving the
medium in direction cos™(n). [Note: Ambartsumian uses S for the incident plane irradiance, but
defines the radiance reflectance without the m, as seen above.] This geometry is illustrated in Fig.
4(A) below. The surface of the medium is denoted by A. 7 is optical depth measured downward
from © = 0 at surface A. The red arrows represent light incident onto the surface of the medium,
being scattered and absorbed within the medium, and leaving the medium.

(N8 cpgrqn) 1208 @) 0
A
Fig. 4(A). The reflectance problem to be
¥ solved.
T2 o0

(A) The original problem.
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Ambartsumian then supposes that a thin layer of optical thickness At is added to the original
medium, as seen in Fig. 4(B) below. The new surface is at A’.

I'n.g) . ns(€)
A i
AT i
exp(-At/n) i/ exo(-At/¢)
A S
r(n.g)
Fig. 4(B). The original medium with a thin
layer of the same materia added.
v
T oo

(B) The medium with a thin layer added.

At is assumed to be thin enough that only terms of first order in At need to be retained in the
development to follow. Now what is the radiance leaving the surface at A’? The incident
irradiance 7S(§) is unchanged. However, as this irradiance travels through the thin layer, it will
be attenuated by a factor of exp(-At/§). The remaining irradiance reaching the depth of the
original surface at A will be reflected by the factor 7(n,&) just as before. Then the radiance
leaving A will be attenuated by a factor exp(-At/m) on the way back to surface A’. Thus the new
radiance I'(n,&) leaving surface A’ will be

I'm&) = exp(-At/) r(n,€) exp(-At/€) S

e R
l

£
() l—ﬁ—ﬂ) ,
n £

R

after dropping terms of order (A1)’ and higher. This is the radiance leaving surface A’ due to
light that travels through layer At without scattering.

However, the new layer At will also scatter light. Proceeding in a fashion similar to that just
seen, Ambartsumian considers 4 cases for scattering with in At, which are illustrated in Fig. 5.
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mH 4 ns o ns
1 1
AT i At i
A i A
| i r(ng)
1 1
1 1
: '
Case 1: Scattering within the added Case 2: Scattering withinthe added
layerwithout reflection at A layerand then reflectionat A
o o  ns o ., nsle
1 1
AT i At i
1
A A
i r(n.g) i r(n,g)
i i
: '
Case 3: Reflectionat A and then Case 4: Reflection at A, scattering,
scattering within the added layer and then reflection at A again

Fig. 5. lllustration of the four additional cases considered by Ambartsumian. All other orders of
scattering and reflection involve terms of higher that first order in Ar.

Case 1. The layer At scatters a part of the direct beam into direction 1. This gives a contribution

Mg
4 7

Here A is the scattering coefficient, and the phase function is assumed to be isotropic.

Case 2. Part of the light is scattered by layer At towards A, where it is partly reflected by A into
direction n. This gives a contribution

1
A &%
> At S 0r(n,C) C .
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Case 3. The layer At scatters the light reflected by A. This gives a contribution

"Arsf(ca)dc

Case 4. Part of the light reflected from A is scattered back by layer At and again is partly
reflected from A. This gives a contribution

1 1 /
S [HCD L [ring) <
0 0

There are an infinite number of additional possibilities for light to be scattered multiple times
within layer At, but those all involve contributions of order (At)* and higher. [Full disclosure: I
haven’t been able to re-derive the exact same forms as Ambartsumian’s terms for Cases 1 to 4.
He does not give a figure, so I may be misunderstanding the details of his ray-tracing geometry.
Someone help me out!! See also the comment in Chandrasekhar, below. ]

Ambartsumian now makes the key observation: Because the original medium was optically
infinitely deep, the medium with the added layer will reflect exactly the same radiance as the
original medium. That is, the total I'(n,§) from the contributions shown above equals the original
I(,&). Thus, by Eq. (9) above, the original reflectance is the same as the total reflectance of the
five terms due to the added layer:

1
- M A A AR 4
r(n.5) r(nf;)(l . &) pi S AT fr(n,C)

1 1 /
© o RO s [reod [ <
0 0 0

Note that the S has cancelled out when writing the equation for the reflected radiance. This
equation can be rewritten as

dq

+2 r(nC)C . 2 r(C&)dC+4fr(C€)dCfr(nC5

Note that the At has now cancelled out.

This is a remarkable equation. This is an integral functional equation for the unknown
reflectance (n,§), given the IOPs via the scattering coefficient A and the assumed isotropic phase
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function, and the desired incident and final angles. This equation allows the computation of the
radiance reflectance of the optically deep medium without the need to solve the radiative transfer
equation within the medium! This must be compared with the solutions of Lommel and
Chwolson: They found integral equations for the radiance within the medium, which required
integrations of their equations throughout the medium (recall Eq. 6 in the Lommel section and
Eq. 8 in the Chwolson section). To compute the radiance leaving the medium, they had to first
solve their integral equations throughout the medium, and then evaluate that solution at the
surface of the medium (at depth a = 0 in their equations). They could then take the ratio of the
radiance leaving the medium to the incident irradiance, and obtain the reflectance of the medium.

Ambartsumian further simplifies this last equation. Defining

R(E) - 4—):”(11,&), (Ambar. Eq. 1)

gives a more symmetric equation for the reflectance:

1 _ ac
— +—|R 1 +=|R
(n &) ) = f(nC)
(Ambar. Eq. 2)

A [y % - & d
5{ ©o = [(nc’) f(ca)C

He then notes that the resulting equation is symmetric in & and 1, which further simplifies the
integral equation. He then defines

A &
om = 1 + = [RMQ =, (Ambar. Eq. 5)
2 : €
and shows that
R(E) = 2 e®
1 . 1 (Ambar. Eq. 6)
n o g
Finally, he arrives at an integral equation for the auxillary function ¢:
)\.
ot =1+ Znom f (P(F’)dg’ (Ambar. Eq. 7)

To summarize: To compute the radiance reflectance of an optically deep medium, first solve
Ambartsumian’s Eq. (7) for ¢. Then use the solution ¢ in his Eq. (6) to get R(n,&), and finally use
R(M,§) in his Eq. (1) to get the desired radiance reflectance ¥(n,§). His Eq. (7) must of course be
solved numerically, but that is a much simpler problem than the solution of Eq. (6) of the
Lommel section or Eq. (8) of the Chwolson section. Ambartsumian says that “the equation 7 is
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easily solved numerically by means of successive approximations,...”
The final page of this paper comments that

“The method exposed above can be applied not only to media of infinite depth, but also
to layers of finite optical thickness 1, enclosed between two parallel planes A and B. In
this case, however, we consider not only the function of diffuse reflection »(1,§) but also a
function s(n,&), which describes the diffuse transparency, i.e., the part of the light which
enters via A and leaves the medium via B. To use invariance, we add a thin layer At on
the side A and subtract the same layer on the side B.”

He then presents a pair of coupled equations for auxillary functions ¢(1) and y(n), which replace
the equation for ¢(n) seem above, and which then give r(n,§) and s(1,&).

Ambartsumian’s 1942 paper addressed the reflectance problem starting with Milne’s
equation. His 1944 paper further extended the formalism of the 1943 paper discussed here to the
case of anisotropic phase functions.

Ambartsumian called his idea the “principle of invariance” because the reflectance of the
homogeneous medium is invariant to the addition of the thin layer. This idea, after decades of
further development is now called “invariant imbedding theory.” That is, the original problem is
imbedded in a new problem, while leaving the reflectance (and/or transmittance) invariant. It
was quickly recognized that this seminal idea enabled the relatively easy numerical solution of a
wide variety of problems, which had previously been quite difficult to solve in pre-computer
days. That is to say, solving Arbartsumian’s Eq. (7) is much easier than solving Lommel’s or
Chwolson’s equations. Consequently, Ambartsumian was awarded the Stalin Prize in 1946 for
this paper. He went on to win many other honors both within the USSR and internationally, and
he circulated in the highest ranks of the Soviet government, always working as a champion for
science. In his later years, he said that it was his principle of invariance that was the most
gratifying of all his contributions to science.
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The page from Ambartsumian (1943) showing the development outlined above. This is surely
one of the most important pages in the history of radiative transfer theory.
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Sobolev. Viktor Viktorovich Sobolev (Buktop
Buxkroposuu Cobose) (1915-1999) was a student of
Ambartsumian, and he was evacuated to Tartarstan along
with his mentor. He had a long and influential career and did
much work on radiative transfer applied to astrophysical
problems. He once said, “A scientist is not one who is
engaged in science, but one who cannot but do it.” I could
not agree more. (Note that V. V. Sobolev is a different
person than S. L. Sobolev, an equally famous
mathematician.)

Sobolev was Ambartsumian’s Ph.D. student. Sobolev continued Ambartsumian’s work and
went on to develop techniques for RTT in expanding gases (such as occur in a planetary nebula
around stellar nova), inclusion of polarization, problems with anisotropic or inelastic scattering,
time-dependent RRT, and RTT in spherical geometries. He developed a number of important
solution techniques for his equations. He was the core of what is sometimes called “The Sobolev
School of Astrophysics.” Although Sobolev is almost a deity in astrophysics, his formulations of
RTT are not usually applicable to oceanographic problems, so he is little known to
oceanographers. I have included him in these notes because of his contributions to the overall
theory of radiative transfer. His contributions to astrophysical RTT are reviewed in Nagirner
(2015).
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Chandrasekhar. Subrahmanyan Chandrasekhar (1910-
1995) was one of India’s most famous scientists. He was
the nephew of C. V. Raman (who received the Nobel prize
in 1930 for his discovery and explanation of what is now
called Raman scattering). Chandrasekhar spent most of his
career at the University of Chicago, where he worked on
astrophysical problems. He received the Nobel Prize in
Physics in 1983 for his work on the structure and evolution
of stars. He is remembered today for working out (at the
age of only 20) the maximum mass of a stable white dwarf
star, now known as the Chandrasekhar limit; a more
massive star is destined to become a black hole. His treatise
Radiative Transfer, published in 1950, remains in print
today and is a standard text for RTT applied to stellar
atmospheres. This book is worth reading, even if just to see how he approached the subject.

One of the topics developed in detail in Radiative Transfer is various principles of
invariance. Chandrasekhar takes a more general approach, beginning with the radiative transfer
equation, than did Ambartsumian, who used heuristic arguments to derive the integral equation
seen previously for the reflectance R(n,§) (which is denoted S(j,p,) in Chandrasekhar; see
Chapter IV of Radiative Transfer). Chandrasekhar’s general equation for the reflectance
(Radiative Transfer §30, Eq. 28) is valid for any phase function. When evaluated for isotropic
scattering (his §33, Eq. 38) , Chandrasekhar’s integral equation for S(u,u,) reduces to
Ambartsumian’s Eq. (2) for R(n,§) (except for a minor difference in the treatment of the albedo
of single scattering). Chandrasekhar then obtains equations (his §33, Egs. 40 and 42) that
correspond exactly to Ambartsumian’s Egs. (5) and (7) seen above, with the exception that
Chandrasekhar uses H(p) to denote Ambartsumian’s @(n). Chandrasekhar then devotes an entire
chapter to the properties and evaluation of the H(p) functions, and he presents tables of
numerical values of H() as a function of p and the albedo of single scattering.

Chandrasekhar goes on to give a detailed development of the general (for any phase function)
invariance principles for both reflectance and transmittance when layers are added or subtracted,
which again reduce to Ambartsumian’s equations for the case of isotropic scattering.

Chandrasekhar’s work did much to bring Ambartsumian’s ideas to the attention of the broad
community of radiative transfer theorists, and to make the needed functions (H(p), etc) readily
available for computations. However, although many of his equations are valid for any phase
function, and often include polarization, his solution techniques never extend beyond a Rayleigh
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phase function. This is adequate for studies of gaseous stellar atmospheres, which do not contain
phytoplankton, but are of little applicability to oceanic problems for which phase functions are
highly peaked in the forward-scattering directions. I well remember spending $7.95 for a copy of
Radiative Transfer when I was a post doc, believing that all knowledge of RTT would be
revealed to me by a Nobel Prize laureate. I soon discovered that nothing in the book was of any
use in computing underwater radiance distributions in real oceans.
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Preisendorfer. Rudolph William Preisendorfer (1927-
1986) was an applied mathematician of the first magnitude.
He worked in a number of areas including tsunami
forecasting and statistical methods for climate prediction,
but he is best known for his work in radiative transfer
theory applied to optical oceanography, which culminated
in his six-volume treatise Hydrologic Optics (1977). 1
worked with him from 1978 to 1986 on the development of
numerical methods for solving the radiative transfer
equation using invariant imbedding. The result of that
collaboration is the well-known HydroLight software,

which is widely used to this day.
Photo from Curtis Mobley’s files.

Preisendorfer’s first love was “hydrologic optics,” as he called the general subject of radiative
transfer in the aquatic environment. After working as a summer student with S. Q. Duntley on
underwater optics problems at Lake Winnepesaukee, New Hampshire, he was hooked. His
undergratuate thesis at MIT (under Duntley’s supervision) was on the analytic solution of a
simplified radiative transfer equation, and his Ph.D. dissertation (Preisendorfer, 1957) was titled
“A Mathematical Foundation for Radiative Transfer Theory.” There followed a series of
mathematical papers developing invariant imbedding theory in a form suitable of application to
oceanic problems. He once told me of his difficulties in getting these papers published. He
would send a paper to an optics journal, only to have it returned without review along with the
comment “this is oceanography; you need to submit this to an oceanography journal.” He would
then resubmit the paper to an oceanography journal, only to be told, “this is mathematics; you
need to submit this to a math journal.” The math journal would then say, “this is optics, you
need to submit this to an optics journal.” After several rounds of such rejections, he concluded
that the entire refereed journal publication business was run by idiots. He was finally able to get
a number of his papers published in the Proceedings of the National Academy of Sciences; these
papers all show “Communicated by S. Chandrasekhar.” In his later years, Preisendorfer tended
to avoid publication in the refereed literature. Instead, he maintained a list of colleagues
interested in his work. Anyone could request to be on this list, and if you weren’t on the list that
was your fault. He would send his latest works to those people, often as photocopies of
handwritten notes. I have been told by one of those colleagues that his unpublished work was
sometimes incorporated into other people’s papers, often without adequate acknowledgment of
his contribution. Knowing Rudy, I don’t think this bothered him a bit.
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Preisendorfer set himself the goal of constructing "an analytical bridge between the mainland
of physics and the island of radiative transfer theory," as he worded it on page 389 of his 1965
treatise Radiative Transfer on Discrete Spaces (Preisendorfer, 1965). At that time, RTT was still
a phenomenological theory, meaning that the governing radiative transfer equations were based
on heuristic arguments and physical intuition, rather than being derived from more fundamental
physics such as Maxwell’s equations for the electric and magnetic fields that give the physical
description of light propagation. Search all you want in physics texts such as Jackson’s Classical
Electrodynamics (1962) and you will find no mention of radiance, nor even of solid angle.

Preisendorfer (and other mathematicians, Richard Bellman in particular) further developed
Ambartsumian’s fundamental idea to the point that the mathematical connection to
Ambartsumian’s 1943 paper is almost unrecognizable to the untrained eye. The resulting
equations enable the computation of the reflectance and transmittance of inhomogeneous layers
of arbitrary thickness and optical properties. This is what is needed for oceanographic
applications.

Preisendorfer’s equations are the core of the HydroLight radiative transfer software. If you
run HydroLight, one of the user inputs is a list of depths where the outputs (the radiance
distribution and all other radiometric quantities such as irradiances and reflectances) are to be
saved. Those depths define finitely thick layers within the water body, but these layers can have
any depth dependence of the absorption and scattering properties, and the particles within the
water can have any phase function. If you look deep inside the HydroLight code, it is not solving
the integro-differential RTE for the radiance per se; it is solving a set of nonlinear ordinary
differential equations (Riccati-type equations) for the reflectances and transmittances (in Fourier
amplitude form) of the layers defined by the user-requested output depths. These reflectances
and transmittances, which include all orders of multiple scattering, once computed are then
combined with boundary conditions at the sea surface and bottom to obtain the radiances at the
user-requested depths. The development of these equations for reflectances and transmittances,
starting with the scalar integro-differential RTE for the radiance, is seen in Chapter 8 of Light
and Water (Mobley, 1994). The corresponding development for the vector RTE is given in
Mobley (2018).

Preisendorfer highlighted the difference in local and global formulations of physical theories.
A local formulation of a physical theory means that the governing equations use spatial
derivatives of the quantities of interest at a particular point. The integro-differential RTE is an
example of a local formulation of RTT because it involves depth derivatives of the radiance at
each depth within the medium. (Another example of a local formulation of a physical law is
Maxwell’s equations in differential equation form.) A global formulation does not use spatial
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derivatives. Ambartsumian’s reflectance equation, and Preisendorfer’s extensions thereof,
compute the reflectance (and transmittance) of entire, finitely or infinitely thick layers “all at
once.” Thus Schuster’s two-flow differential equations are a local formulation of a radiative
transfer problem; Ambartsumian’s integral equation for the reflectance of a semi-infinite medium
is a global formulation.

Preisendorfer’s development of the mathematics of RTT culminated in his six-volume, 1,757
page opus magnum, Hydrologic Optics (Preisendorfer, 1977). In spite of the great care he used
in formulating the mathematical and physical foundations of RTT, he never quite succeeded in
building the bridge between physics and RTT. That is the subject of the final section of these
notes. Nevertheless, Preisendorfer was one of the greatest theoreticians of RTT for two reasons.
First, he continued Gershun’s attempt to put RTT on a firm mathematical and physical
foundation, and he made great progress towards that goal. Second, he brought Ambartsumian’s
idea of invariance and a global formulation of RTT to its fullest form, valid for almost any
optical medium. Without his decades of work to perfect invariant imbedding theory, there would
be no HydroLight.
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Forgotten and Remembered

Both Lommel’s 1887/1889 paper and Chwolson’s 1889 paper were physical and
mathematical tours de force, which broke much new ground. Their approaches were thoroughly
modern. Unfortunately, their papers seem to have attracted little attention and were apparently
quickly forgotten. Subsequent authors scarcely ever referenced either paper.

Schuster (1905) makes no reference to either Lommel or Chwolson, so it appears that their
papers were either already forgotten or not recognized for their importance. Schuster’s 1905
paper is often cited by later authors as being the foundational paper of RTT. For example, in his
1930 Handbook der Astrophysik article, Milne did not reference either Lommel or Chwolson but
stated that Schuster’s 1905 paper was “The pioneering paper on the transfer of radiation by
scattering.” Duntley (1942) states that “The first fundamental approach to this type of problem
[the problem of light propagation in “diffusing materials”’] was made by the astronomer Arthur
Schuster. In 1905 he published a theory describing the escape of radiation from the self-
luminous, foggy atmosphere of a star.” Chandrasekhar (1960) says in the preface to his
monumental treatise that (after referring to Rayleigh 1871), “However, the subject was given a
fresh start under more tractable conditions with Arthur Schuster formulated in 1905 a problem in
Radiative Transfer in an attempt to explain the appearance of absorption and emission lines in
stellar spectra, and Karl Schwarzschild introduced in 1906 the concept of radiative equilibrium in
stellar atmospheres.” None of these later papers reference either Lommel or Chwolson.

The only citations to Lommel and Chwolson from the early 1900s that I have found are in a
mathematical treatise on the logarithmic integral (Nielsen, 1906), which merely lists their papers
in a lengthy bibliography as having used the logarithmic integral for “physical applications,” and
King (1913a) who cites Lommel as mentioned previously. I have not found any references to
Lommel or Chwolson in the classic works of Chandrasehkar, Jerlov, Preisendorfer, Tyler,
Duntley, or several other luminaries of their era.

The earliest “modern” reference to Lommel and Chwolson I’ve found is in van de Hulst
(1980), where he says (volume 1, page 127), “It may be noted, however, that the basic integral
equation (for which we use the now common name ‘Milne equation’) ... was already explicitly
derived by Lommel (1889) and Chwolson (1890).” I myself had never heard of Lommel until I
found a nearly illegible photocopy of his 1889 paper in Preisendorfer’s files after his death. 1
then briefly summarized Lommel’s work in Light and Water (1994, pages 312-313). At that
time, I was unaware of Chwolson; I believe I first saw a reference to Chwolson in one of
Mishchenko’s books.
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In recent years Lommel and Chwolson have finally received the recognition they are due.
Nowadays, it seems obligatory to add at least a sentence or two acknowledging the seminal
contributions of Lommel and Chwolson to the foundations of RTT. For example, a recent paper
by Lessig et al. (2012) on the mathematical formulation of radiance states, when reviewing the
history of radiomentric concepts, “Although many prominent scientists and distinguished
mathematicians, such as von Helmholtz, Kirchhoff, and Clausius, employed radiometry, the
physical and mathematical foundations of the theory remained entrenched in the 18th century. A
notable exception is the work by Lommel. He considered radiance as emanating from a volume,
an idea that was forgotten shortly afterwards,...” And then a bit later, Lessig et al. say, “Similar
results that accounted for scattering were obtained by Chwolson and somewhat later by Schuster,
while Schwarzschild studied radiation equilibrium, a question again considered before by
Lommel. Based on Schuster's work, Jackson and King developed the transport equations that are
in use to this date.”

Lommel and Chwolson performed essentially the same physical and mathematical analyses
and obtained essentially the same integral forms of the RTE. Their equations are similar to what
is seen in Light and Water Eq. (5.30), where an integral form of the RTE is obtained by
integration the integro-differential Eq. (5.24). They published their papers almost
simultaneously, and they were likely unaware of each other. Given the seminal nature of their
papers and their nearly simultaneous publications, I personally believe that Lommel and
Chwolson should be recognized as “The Fathers of Radiative Transfer Theory.”
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Completing the Bridge

As has been mentioned, both Gershun and Preisendorfer recognized the need to make RTT a
rigorous subdiscipline of physics. This is not something that worries most oceanographers
because the equations of phenomenological RTT give answers of sufficient accuracy for the
practical problems of optical oceanography and ocean color remote sensing. However, The Deep
Thinkers do lie awake at night worrying about esoteric matters physics and mathematics.

Indeed, the introduction of the 1939 English translation of Gershun’s The Light Field begins
with

Theoretical photometry constitutes a case of "arrested development", and has remained

basically unchanged since 1760 while the rest of physics has swept triumphantly ahead. In

recent years, however, the increasing needs of modern lighting technique have made the

absurdly antiquated concepts of traditional photometric theory more and more untenable.

Ideally there should be a path leading from the most fundamental physical laws governing
electromagnetism and light clear through to the simplest of radiative transfer equations such as
the scalar RTE solved by HydroLight or the two-flow irradiance equations of Schuster (1905).
That path is conceptualized in the figure below.

Quantum electrodynamics (QED)

i

Maxwell's equations

i

The general vector radiative transfer equation (VRTE)

1

The VRTE for particles with mirror symmetry

d

The scalar RTE for the first component of the Stoke’s vector

d

The two-flow irradiance equations
Fig. 6. Steps to a rigorous formulation of RTT.
Quantum electrodynamics (QED) is the fundamental physical theory that explains with (as
far as we know) total accuracy the interactions of light and matter, and of electrically charged

particles. It was developed in the 1940s and 1950s by Richard Feynman, Julian Schwinger, and
Shinichiro Tomonaga, who shared the 1965 Nobel Prize in Physics for their work. Although the
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conceptual rules of QED are easy to state, the associated mathematics is outrageously complex,
and consequently the theory can be applied only at the level of interactions between elementary
particles.

QED is a quantum field theory that describes light and electromagnetism at the level of
individual photons, which in QED are viewed as the quantized vibrational modes of the
electromagnetic field. It is possible to take a classical physics limit” of QED to get a classical
field theory, in which the electromagnetic field is not quantized. The result is Maxwell’s
equations, which describe electric and magnetic fields as continuous functions of space and time.
The step from QED to Maxwell’s Equations was made by Feynman, who, as the story goes,
showed that Maxwell’s Equations can be derived from QED but never published the derivation.

The “general VRTE” shown in the figure above (and seen below) is a vector radiative
transfer equation valid for any medium or assemblage of particles of any size, shape, or
orientation. Getting from the general VRTE to a simpler VRTE as commonly used in
atmospheric or oceanic optics can be done by any good physicist. Getting from there to a scalar
equation is easy, and getting from the scalar RTE to two-flow equations is almost trivial (e.g.,
Light and Water §5.11). The crux of building the bridge from the mainland of physics to the
island of RTT is getting from Maxwell’s Equations to the general VRTE. That span of the
bridge was not completed until the last two decades, and the chief engineer was M. 1.
Mishchenko.
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Mishchenko. Michael 1. Mishchenko is a physicist
specializing in electromagnetic scattering theory,
especially as applied to atmospheric optics. For more
than 20 years he has been Senior Scientist at the NASA
Goddard Institute of Space Studies. He has authored
approximately 300 publications, several highly technical
books, and numerous book chapters; these have been
cited almost 30,000 times. His contributions to RTT are
unfortunately under-appreciated in the optical
oceanography community, no doubt because the price of

admission for reading his papers is a very deep
understanding of electromagnetic scattering theory and
the associate mathematics. His resume at
https://www.giss.nasa.gov/staff/mmishchenko/mishchenko.html will leave you in awe. In my
humble opinion, he holds the title of Deepest Thinker in Radiative Transfer Theory.

If ever there is a place in science where ignorance is bliss, it is in RTT. Mishchenko has
published a series of papers on the foundations of RTT, which show that phenomenological RTT
is “a tissue of fallacies,” to paraphrase Bertrand Russell’s description of Newton’s calculus. A
good place to start understanding the deficiencies of phenomenological RTT and Mishchenko’s
contributions to RTT is his two recent reviews “125 Years of Radiative Transfer: Enduring
Triumphs and Persisting Misconceptions” (Mishchenko, 2013) and “Directional radiometry and
radiative transfer: The convoluted path from centuries-old phenomenology to physical optics”
(Mishchenko, 2014). Even if you can’t follow the math (and I myself seldom can), you need to
read these two papers to get an ideal of the fundamental problems with phenomenological RTT,
and of the resolution of those problems.

The fundamental problem with RTT as historically formulated is that the concept of radiance
(specific intensity) itself is inconsistent with electromagnetic theory as described by Maxwell’s
equations. The radiance is usually described as giving the “angular distribution of radiant
(electromagnetic, light) energy flow,” or something to that effect. The usual derivation of the
scalar RTE (as seen in Light and Water Chapter5, for example) is then based on the idea that the
radiance describes the radiant energy traveling through each point in space in all directions. The
RTE is then derived by invoking conservation of energy via various processes (absorption,
scattering, emission) that affect the radiance. The same arguments can be applied at the vector
level to include the effects of polarization. However, this approach is incorrect because it is not
radiant energy that interacts with matter, it is electric and magnetic fields.
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Figure 7 below shows the inconsistency of the energy vs electromagnetic field view points of
radiometry. The red lines represent two plane waves of light traveling in vacuo in directions
q,and §, approaching a well collimated radiometer (WCR) whose field of view is shown by the
dotted lines; the WRC has a solid angle of AQ and a collector of area AA. Neither of these
incident plane waves will be detected by the radiometer because their directions of propagation
are outside the field of view of the radiometer. According to Maxwell’s equations, these plane
waves are described by their electric fields E, and E,, which as drawn are pointing out of the
paper towards the reader, and by their magnetic fields B, and B,, which are perpendicular to the
electric fields. These field vectors are shown in blue. The energy in these plane waves is given
(in SI units) by their respective Poynting vectors, S, = (1/u,) E; x B; and S,= (1/,) E, x B,,
where |, is the permeability of free space and x is the vector cross product. These Poynting
vectors are shown in green; these vectors point in the same directions as the propagation
directions §,and §,. At the entrance of the radiometer, these fields combine by vector addition
to give the total electric and magnetic fields, E = E, + E, and B =B, + B,. The corresponding
total Poynting vector S = (1/p,) E x B points directly into the radiometer. Thus according to
electromagnetic theory, the net flow of energy is directly into the radiometer, but the incident
light is not detected. We are forced to conclude that a WCR does not actually detect the net flow
of radiant energy as described by Maxwell’s equations! This is contradictory to the viewpoint of
phenomenological RTE, which is based on energy arguments and views a radiometer as an
instrument that collects radiant energy traveling into the field of view of the instrument.

LERRN

Fig. 7. lllustration of the inconsistency of phenomenological RTT and electromagnetic theory.
Based on Fig.12d of Mishchenko (2014).
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The preceding argument shows that something is fundamentally wrong with the heuristic
arguments of energy-based, phenomenological RTT. My presentation above is intended to pique
your interest; I refer you to Mishchenko’s papers for a quantitative analysis and resolution of
these problems.

As Mishchenko emphasizes, in practice we need to solve two well posed physical problems:

(1) We need to compute the radiant energy budget of a volume of material (say a volume of
ocean water). This will allow us, for example, to compute the heating of the water, and to
compute how much light energy is available for photosynthesis.

(2) We need to understand exactly what a “well collimated radiometer” measures (e.g., a
common “Gershun tube” type of radiometer). This will allow us to properly interpret our
measurements and to understand the relation between what is in the water and the optical
quantities being measured, which is the basis of remote sensing.

Mishchenko shows that both of these problems can be solved without resorting to heuristic
arguments or even introducing the concept of radiance.

Consider a volume containing a large number of scattering and absorbing particles whose
single-particle absorption and scattering properties are known. Then, invoking only the
fundamental laws of electromagnetism, and after a great deal of outrageously abstract math,
Mishchenko arrives at the equation (Mishchenko, 2013; cf. 2002, 2014)

QVi(r,q) = —no(K(&,€))e T(r,@)+no / 4/ (Z(q, &, €))e L(r,&')  (Mish 2013, Eq.4)
4w

Here §is a unit direction vector, r is the location in 3D space, 7, is the average number of

scattering particles per unit volume, K is the 4x4 real-valued, single-particle extinction matrix, &
labels the microphysical state of a particle (orientation, etc), (), indicates the average over all
microphysical states, and Z is the 4x4 real-valued, single-particle phase matrix, which is also
averaged over all microphysical states. In general, for irregularly shaped particles without any
symmetry distributed in any random or non-random orientations and having any optical

properties such as dichroism, all 16 elements of K and Z will be non-zero. I(r,q) isa4x 1

column vector.
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In addition, Mishchenko shows that the quantity measured by a WCR is
A4 AQ(r,§) (Mish 2013, Eq. 3)

and that the time-averaged Poynting vector is given by

(S(r,p) = f4 441 (Mish 2013, Eq. 5)

where [(r,q)is the first element of the 4 element vector I(r,q), S(r.?) is the Poynting vector at

instantaneous time ¢, and (S(r,r)) denotes a time average over a sufficiently long time.

Mishchenko’s Eq. 4 seen above is the general VRTE referred to in Fig. 6 above. This
equation looks just like the vector RTE de'rived by heuristic arguments. However, this equation
was derived directly from electromagnetic theory without any use of heuristic arguments or any
mention of radiance, and the interpretation of this equation is totally different. [ can do no better
than to quote Mishchenko (2013, page 16):

One might claim that Eq. (4) is the standard RTE postulated in the phenomenological RTT
based on vague energy-conservation and directional-energy-propagation arguments.
Furthermore, one might equate I(r,§)with the phenomenological radiance and thereby
attribute to it primordial physical significance as the quantity specifying the angular
distribution of electromagnetic energy flow at the point r over all propagation directions

q € 4m.

The microphysical approach to radiative transfer shows that this interpretation of Eq. (4) and
the quantity I(r,q)is thoroughly incorrect. The quantity I(r,q) does enter the formula for the
time-averaged Poynting vector. However, we have already seen that even the Poynting vector
cannot be legitimately claimed to specify the direction of the time-averaged electromagnetic
energy flow, and so there is even less justification for ascribing any “directional energy”
content to the specific intensity. The quantity I(r,q) is nothing but a formal solution of the
intermediate equation (4) and appears as a byproduct of the purely mathematical derivation of
Egs. (3) and (5) from the Maxwell equations.

In other words, we can solve the physical problems (1) and (2) above as follows. We first
solve Eq. (4) above for the vector quantity I(r,q), which indeed does have the same units as the
phenomenological radiance. We can then compute the energy balance of problem (1) above via
Eq. (5) and Poynting’s theorem, which says that the net energy entering or leaving a volume of
space is the integral of the component of (S(r,# )) normal to the surface enclosing the region,
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integrated over the surface enclosing the volume. The answer to Problem (2) above is then given
by Eq. (3), where the qin that equation is the set of directions within the field of view of the
instrument.

Mishchenko’s Eq. (4) above is the long-awaited link between Maxwell’s equations and RTT.
Construction of this link required neither the heuristic arguments of phenomenological RRT nor
any mention of radiance as historically defined.

60



Simplifications of the General VRTE

[ This section is condensed from the Ocean Optics Web Book page at

www.oceanopticsbook.info/view/radiative transfer theory/level 2/the vrte for mirrorsymmetric media ]

This section goes beyond the needs of a historical review, but nevertheless is justified in
order to finish the story of how electromagnetic theory is connected to the radiative transfer
equations commonly used by optical oceanographers.

The general VRTE seen in Mishchenko’s Eq. (4) above is applicable to almost any medium
containing particles that are not so densely packed that the “far-field” approximation fails. That
is to say, the particles are far enough away from each other that scattering from each particle is
independent of scattering by its neighbors. This is the case for phytoplankton and other types of
particles in the ocean, which on average are separated by a hundred or more wavelengths of
visible light. Moreover, oceanic particles often have a degree of symmetry, are seldom dichroic,
and the overall medium does not transmit light differently in different directions (as can a
crystal). Thus the generality of his Eq. (4) is seldom needed in applications to oceanography
problems.

The general VRTE simplifies greatly if the scattering particles are randomly oriented and
have mirror symmetry. A particle has mirror symmetry if a translation and/or rotation of the
mirror-reflected particle can make it congruent with the original particle. This is illustrated in the
figure below.
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lllustration of mirror symmetry. Panels A and D represent two particles. The dashed line is a
mirror. The second column is the mirror image of the first column. The last column is the mirror
image rotated by 180 deg about an axis normal to the figure, as illustrated by the green arrows.
Top row: a mirror-symmetric particle; bottom row: a particle that is not mirror-symmetric.
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If the scattering medium consists of randomly oriented, mirror symmetric particles, then the
bulk medium is directionally isotropic and mirror symmetric. In this case, the 4 x4 extinction
matrix becomes diagonal, with each element equal to K,,. There is then a common extinction
coefficient for all states of polarization and directions of propagation:

K(q) = K11

jen R on Bl an I
oo = O
o= OO
— O oo

The quantity #, K, is the oceanographer’s beam attenuation coefficient c.

By definition the phase matrix Z(§,§ ’)scatters light from the incident meridian plane
(defined by the incident direction §’in a convenient coordinate system) to the final meridian
plane (defined by the scattered direction §). It is convenient to write Z(§,q ") as the product of
three matrices that

1. Transform the initial (unscattered) vector T(r,q”) from the incident meridian plane to the
scattering plane, which is the plane containing the incident §' and scattered § directions,

2. Scatter the vector from incident direction§’ to scattered direction §, with calculations
performed in the scattering plane, and

3. Transform the final vector I(r,q) from the scattering plane to the final meridian plane.

When this is done, the phase matrix is written as

Z(a.4") = R()M(3.d R(@)
Here R(et)is a 4x4 matrix that transforms ("rotates" through an angle &' ) the incident vector
into the scattering plane, M(§,§) is a 4 x 4matrix, called the scattering matrix, which by
definition scatters the incident vector to the final vector, with both expressed in the scattering
plane; and R(a)is a 4 x4 matrix that rotates the final (scattered) vector from the scattering plane
to the final meridian plane.

For an isotropic, mirror-symmetric medium, the scattering matrix becomes block symmetric
with only six independent elements. Moreover, the scattering then depends only on the included

angle ¥ = cos™(§’-q) (the scattering angle) between directions § ‘and§, and not on §’and§
individually . (For the form of this M({) see Mishchenko et al. (2002) or the Ocean Optics Web
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Book page cited above.)

For many applications it is acceptable to model the ocean as a plane parallel medium for
which quantities depend spatially only on the depth z. The left side of the general VRTE seen in
Eq. (4) above then becomes

q-Vi(r,q) = cosb dii(z,e,(b)
Iz

where polar and azimuthal directions 6 and ¢ are now used to specific the direction of the unit
vector §.

These simplifications lead to the 1D VRTE that is commonly used in atmospheric and
oceanic optics:

I - .
cosé ;—I(z.é),d)) — o(2)1(z,6, ¢)
az

+ / R(a) M(z.0) R(a")I(z,0.¢") dQ(E', &)
47

This is as far as we should go in simplfying the RTE if polarization is to be included. This
equation again has the same form as the 1D VRTE derived by heuristic arguments, but now the
derivation comes via an unbroken chain of physics reaching back to Maxwell’s equations.

An obvious question is whether or not the assumption of mirror symmetric particles is
justified for oceanographic applications. The figure below shows a collection of oceanic diatoms
(arranged for artistic purposes). Many of these are clearly not spherical (contrary to what is often
assumed by modelers who can't wean themselves away from Mie theory), but they all appear to
be mirror-symmetric to a good approximation. The same holds true for many other species of
phytoplankton which, if not roughly spherical, at least have bilateral symmetry. Likewise,
atmospheric particles such as fog droplets, snowflakes, and ice crystals are often mirror
symmetric.
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Diatom shapes. Photo
Kreispraeparat-25-G, from
http://www.mikroskopie-ph.de.

A final step in simplifying the VRTE can be made by extracting an equation for the first
component of I(z,0,¢), which historically has been called the radiance L(z,0,$). This is best
done by considering the actual form of the block-diagonal scattering matrix M({s), incorporating
the explicit forms of the rotation matrices, and writing out the resulting equation for 2(z,0,).
This is very instructive because it allows for an estimate to be made of the error that results if
polarization is ignored. This takes us beyond the purview of notes on the history of RTT, but the

development can be seen at
http://www.oceanopticsbook.info/view/radiative transfer theory/level 2/the scalar radiative transfer equation
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Closing Thoughts

The ancients were of course aware of the effects of radiative transfer through absorbing and
scattering media. Galileo, for example, observed that “...distant mountains appear blue and
somewhat paler, though in reality they are just as dark as those that are nearer to us,...” [Quoted
in Reeves (1997), page 116]

However, as we have seen, quantitative photometry arose from visual observations of screens
illuminated by a candle in the work of Bouguer, with the corresponding mathematical
formulation tracing back to Lambert.

The pioneering papers of Lommel and Chwolson were unfortunately soon forgotten, and it
was several decades before physics and mathematics of equal sophistication again appeared in
the work of King. Wheels often get reinvented. King gets credit for developing the first RTE for
an arbitrary phase function.

Meanwhile, Schuster and Schwarzshild used simple equations to obtain approximate
solutions to a variety of astrophysical problems. Their work was especially remarkable in that
they used simple optical observations of solar spectra and limb darkening to deduce basic
features of the temperature profile within the solar atmosphere and to understand the role of
energy transfer by radiation in the Sun’s outer layers. Their work constitutes an elegant solution
of a complicated radiative transfer inverse problem when reduced to its simplest analytical form.

Schuster’s 1905 paper explained bright and dark spectral lines by considering scattering and a
blackbody source term in the two-flow equations. He showed that he could obtain either dark or
bright spectral lines depending on the relative contributions of absorption and scattering and on
the temperature profile. His contribution to RTT was the introduction of the two-flow equations
for plane irradiance.

Schwarzschild 1906 considered absorption and a blackbody source term in the two-flow
equations (ignoring scattering) and in a radiance-level RTE to deduce the thermal structure of the
sun’s atmosphere. His contribution to RTT was the introduction of a differential form of the
RTE for radiance.

Milne revisited the limb-darkening problem with a more detailed analysis than that of
Schwarzschild. Rather than solving for the radiance leaving the solar atmosphere using assumed
temperature profiles (as did Schwarzschild), Milne derived an equation for the depth dependence
of the blackbody source term (i.e., for the depth dependence of the temperature) corresponding to
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the requirement than the Sun’s atmosphere be in radiative equilibrium.

Gans then considered polarization in the first paper to treat RTT in the ocean. His paper was
also remarkable in that it dealt with electric fields, rather than with energy.

Ambartsumian re-examined the problem of the diffuse reflectance of an optically deep
medium, which had been addressed by both Lommel and Chwolson over four decades before.
However, Ambartsumian found an entirely new approach to the problem, which would now be
called a global formulation of RTT. Fortunately Ambartzumian did not suffer the same fate of
obscurity as did Lommel and Chwolson.

Ambartsumian’s seminal invariance ideas received a wide audience via Chandrasekhar’s
treatise of 1950. Preisendorfer then extended the invariance concepts to give them great
generality so that they could be applied to inhomogeneous media with arbitrary phase
functions—just what is required for oceanographic applications. Preisendorfer’s equations are
the mathematical core of the HydroLight radiative transfer code, which for over two decades has
found wide use in optical oceanography and ocean-color remote sensing.

Gershun made the first attempt to put RTT on a firm physical foundation. Preisendorfer
again recognized the need to connect phenomenological RTT with fundamental physics.
Although he was especially rigorous in his mathematics and made great progress, the connection
was not fully completed until the exceptionally sophisticated work of Mischenko and his
colleagues in the twenty-first century. It thus took 70 years after Gershun and almost half a
century after the first of Preisendorfer’s attempts before RTT was fully incorporated into physics.

Although the contradictions and inconsistencies of phenomenological RTT have now been
exposed and resolved by Mishchenko, the old conceptualizations, terminology, and
misunderstandings are not going to disappear any time soon. It is simply too convenient to think
in terms of energy-based radiance as formulated since the days of Planck. Mishchenko
recognizes the uphill battle to be fought. In the closing section of Mishchenko (2014), he quotes
Born and Wolf (1999):

It seems to be a characteristic of the human mind that familiar concepts are abandoned only
with the greatest reluctance, especially when a concrete picture of the phenomena has to be

sacrificed.

That original quote actually refers to the decades-long struggle before get Maxwell’s equations
and modern electromagnetic theory were fully accepted. Indeed, some of the papers I read in the
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course of preparing this note still referred to the “aether” well into the twentieth century, even
though the Michelson and Morley experiment of 1887 failed to detect it, and Einstein’s special
relativity of 1905 showed there was no need for it. Max Planck, who had similar problems with
the acceptance of his quantum ideas, said (Planck,1906b) that

A new scientific truth does not triumph by convincing its opponents and making them see the
light, but rather because its opponents eventually die, and a new generation grows up that is
familiar with it.

This is sometimes paraphrased as “Science advances one funeral at a time.”

A similar struggle is underway, also with Mishchenko on the front line of battle, to correct
the misuse of the word “photon” and the misconception of light as consisting of little particles
zooming around in space. But that is another story, best told elsewhere. (Meanwhile, for more
on that and a “History of Light” see
http://www.oceanopticsbook.info/view/light and radiometry/level 2/the nature of light)
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