
This page develops the mathematical tools needed to specify directions and angles in
three-dimensional space. These mathematical concepts are fundamental to the specification
of how much light there is and what direction it is traveling.

Coordinate Systems and Directions

Locations and directions will be specified with reference to particular coordinate systems
chosen to be convenient for the problem at hand. These coordinate systems can be “global”
or “ocean” systems that are fixed once and for all in their spatial orientation, or they can
be “local” systems determined by the instantaneous direction of light propagation.

Global coordinate systems

The most common ocean system is defined as follows. Let let x̂, ŷ and ẑ be three mutually
perpendicular unit vectors that define a right-handed Cartesian coordinate system. Let the
depth z be measured positive downward from 0 at the mean sea surface, as is customary in
oceanography. The unit direction vector ẑ thus points downward. For problems involving
sea surface waves it is convenient to resolve the waves into “along-wind” and “cross-wind”
components (see the pages on Cox-Munk sea-surface slope statistics and modeling sea sur-
faces). This is most easily done if x̂ is chosen to be in the direction that the wind is blowing
over the ocean surface, i.e. x̂ points downwind. The cross-wind direction is then given by
the cross (or vector) product ŷ = ẑ × x̂. This defines the “wind-based” coordinate system
used in the HydroLight radiative transfer code. If the problem at hand required the analysis
of Sun glint on the sea surface as seen from an airplane, then it would be convenient to use a
“Sun-based” system with x̂ pointing towards or away from the Sun and ẑ pointing upward,
away from the mean sea surface (see Fig. 2 of the Cox-Munk page). No matter how chosen,
the (x̂, ŷ, ẑ) directions remain fixed in space for the given problem.

Given a global coordinate system, a direction in space is specified as follows. Let ξ̂ denote
a unit vector pointing in the desired direction. The vector ξ̂ has components ξx, ξy and ξz
in the x̂, ŷ and ẑ directions, respectively. We can therefore write

ξ̂ = ξxx̂ + ξyŷ + ξzẑ ,

or just ξ̂ = (ξx, ξy, ξz) for notational convenience. Note that because ξ̂ is of unit length, its
components satisfy ξ2

x + ξ2
y + ξ2

z = 1.

An alternative description of ξ̂ is given by the angles θ and φ, defined as shown in Fig.
figure1. The polar angle θ is measured from the direction of ẑ, and the azimuthal angle φ
is measured positive counterclockwise from x̂, when looking toward the origin along ẑ (i.e.
when looking in the −ẑ direction). For downward directions (the red arrow in the figure),
θ < π/2; for upward directions (the green arrow in Panel (b)), θ > π/2. The connection
between ξ̂ = (ξx, ξy, ξz) and ξ̂ = (θ, φ) is obtained by inspection of Panel (a) of Fig. figure1:

ξx = & sin θ cosφ

ξy = & sin θ sinφ (1)

ξz = & cos θ
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where θ and φ lie in the ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The inverse transformation is

θ = & cos−1(ξz)

φ = & tan−1

(
ξy
ξx

)
(2)

The polar coordinate form of ξ̂ could be written as ξ̂ = (r, θ, φ), but since the length of r is
1, we can drop the radial coordinate for brevity.

Figure 1: A global, ocean coordinate system. Panel (a) shows a unit direction vector ξ̂
heading downward into the ocean (red arrow) and the corresponding Cartesian components
(ξx, ξy, ξz) and angular coordinates (θ, φ). In panel (b), the blue cone represents an element

of solid angle ∆Ω(ξ̂) centered on direction ξ̂ of Panel (a). The green arrow shows an upward
directed unit vector and the corresponding (θ, φ).

Another useful description of ξ̂ is obtained using the cosine parameter

µ ≡ cos θ = ξz. (3)

The components of ξ̂ = (ξx, ξy, ξz) and ξ̂ = (µ, φ) are related by

ξx = &(1− µ2)1/2 cosφ

ξy = &(1− µ2)1/2 sinφ (4)

ξz = &µ,

with µ and φ in the ranges −1 ≤ µ ≤ 1 and 0 ≤ φ < 2π. Hence a direction ξ̂ can be
represented in three equivalent ways: as (ξx, ξy, ξz) in Cartesian coordinates, and as (θ, φ) or
(µ, φ) in polar coordinates.

The scalar (or dot) product between two direction vectors ξ̂′ and ξ̂ can be written as

ξ̂′ · ξ̂ = |ξ̂′| |ξ̂| cosψ = cosψ,
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where ψ is the angle between directions ξ̂′ and ξ̂, and |ξ̂| denotes the (unit) length of vector
ξ̂. The scalar product expressed in Cartesian-component form is

ξ̂′ · ξ̂ = ξ′xξx + ξ′yξy + ξ′zξz.

Equating these representations of ξ̂′ · ξ̂ and recalling Eqs. (likesubsection1) and (align4) leads
to

cosψ = &ξ′xξx + ξ′yξy + ξ′zξz

= & cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ) (5)

= &µ′µ+

√
1− µ′2

√
1− µ2 cos(φ′ − φ)

Equation (align5) gives very useful connections between the various coordinate representa-
tions of ξ̂′ and ξ̂, and the included angle ψ. In particular, this equation allows us to compute
the scattering angle ψ when light is scattered from an incident direction ξ̂′ to a final direction
ξ̂.

The set of all directions ξ̂ is called the unit sphere of directions, which is denoted by Ξ.
Referring to polar coordinates, Ξ therefore represents all (θ, φ) values such that 0 ≤ θ ≤ π
and 0 ≤ φ < 2π. Two subsets of Ξ frequently employed in optical oceanography are the
downward (subscript d) and upward (subscript u) hemispheres of directions, Ξd and Ξu,
defined by

Ξd& ≡ all (θ, φ) such that 0 ≤ θ ≤ π/2 and 0 ≤ φ < 2π,

Ξu& ≡ all (θ, φ) such that π/2 < θ ≤ π and 0 ≤ φ < 2π.

Some authors use the notation 2πd for Ξd and 2πu for Ξu because these hemispheres of
directions contain 2π steradians of solid angle.

Local coordinate systems

In Monte Carlo ray tracing calculations, for example, it is necessary to specify the polar and
azimuthal scattering angles of a scattered ray relative to the direction of the unscattered
ray. This requires defining a local (at the end point of the unscattered ray) Cartesian system
“centered” on the direction of the unscattered ray, rather than on a fixed ẑ direction. A
local system that meets the needs of Monte Carlo ray tracing can be defined as follows.

Referring to Fig. figure2, let #1 = |R′| ξ̂′ denote a light ray with starting point #1 =
(x1, y1, z1) and ending point #1 = (x2, y2, z2) in a global coordinate system. |R′| is the
length of the vector #1, which is traveling in direction ξ̂′ = (θ′, φ′) in the global system.
Now suppose that this ray scatters at point #1 to create a new ray #1, which ends at
poinr #1. To describe that scattering, it is necessary to define a local (at the point of
scattering #1) coordinate system for the scattering calculations. The scattering angles ψ
and α (computed as described on page Probability Functions will then be applied in this
system to determine the direction of the scattered ray #1 relative to the unscattered ray
#1.
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Figure 2: A local coordinate system used to describe the scattering of an in-water ray. The
initial or unscattered ray is #1; the scattered ray #1 is in red. The ocean coordinate system
and angles measured in this system are in black, the local coordinate system is in blue, and
angles measured in the local system are in red. The blue dotted lines are lines of constant
θ′ and constant φ′; φ̂ and θ̂ are respectively tangent to these lines at point #1.

In the ocean system, ray #1 has components (R′x, R
′
y, R

′
z):

#1 = &R′x x̂ +R′y ŷ +R′z ẑ

= &R′ sin θ cosφ x̂ +R′ sin θ sinφ ŷ +R′ cos θ ẑ , (6)

where the Cartesian components R′x etc., in terms of spherical coordinates come from Eq
(likesubsection1).

A convenient local coordinate system (θ̂, φ̂,#1) for scattered rays is constructed as
follows. The radial unit vector

#1 =
#1

|R′|
=

#1−#1

|#1−#1|

is in the same direction as the initial ray #1. The azimuthal unit vector φ̂ is defined by the
cross product of the ocean coordinate system ẑ and the incident vector’s direction:

φ̂ =
ẑ×#1

|ẑ×#1|
.

This vector points in the direction of increasing φ values. (If the unscattered vector is in the
same direction as ẑ, the direction of φ̂ can be chosen at random.) The polar unit vector is
then given by

θ̂ = φ̂×#1 .
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This vector points in the direction of increasing θ values. (If you think of point #1 as being
on the surface of the Earth, then θ̂ points south, φ̂ points east, and #1 is straight up.)
The (θ̂, φ̂,#1) system is then an orthogonal system of coordinates in which the scattering
angles ψ and α can be applied to define the direction of the scattered ray. However, these
directions are not fixed in the ocean system; they depend on the direction of the unscattered
ray #1.

After the direction of the scattered ray has been determined in the local (θ̂, φ̂,#1)
system, the scattered ray direction must be specified in terms of (θ, φ) in the global system,
so that the scattering process can be repeated.

Similarly, in calculations involving polarization, a local Cartesian system is needed to
resolve the components of the polarization relative to some reference plane. This reference
plane can be either the meridian plane, which is the plane containing ẑ and the direction
of propagation; or the scattering plane, which is the plane containing the incident and
final directions of the scattered light (see Figs. 1 and 2 on the Polarization: Scattering
Geometry page). Again, the appropriate local coordinate system depends on the direction
of propagation of the light.

Solid Angle

Closely related to the specification of directions in three-dimensional space is the concept of
solid angle, which is an extension of two-dimensional angle measurement. As illustrated in
panel (a) of Fig. figure3, the plane angle θ between two radii of a circle of radius r is

θ ≡ arc length

radius
=
`

r
(rad).

The angular measure of a full circle is therefore 2π rad. In panel (b) of Fig. figure3, a patch
of area A is shown on the surface of a sphere of radius r. The boundary of A is traced out
by a set of directions ξ̂. The solid angle Ω of the set of directions defining the patch A is by
definition

Ω ≡ area

radius squared
=
A

r2
(sr).

Since the area of a sphere is 4πr2, the solid angle measure of the set of all directions
is Ω(Ξ) = 4π sr. Note that both plane angle and solid angle are independent of the radii
of the respective circle and sphere. Both plane and solid angle are dimensionless numbers.
However, they are given “units” of radians and steradians, respectively, to remind us that
they are measures of angle.

Consider a simple application of the definition of solid angle and the observation that a
full sphere has 4π sr. The area of Brazil is 8.5 · 106 km2 and the area of the earth’s surface
is 5.1 · 108 km2. The solid angle subtended by Brazil as seen from the center of the earth is
then 4π 8.5 · 106/5.1 · 108 = 0.21 sr.

The definition of solid angle as area on the surface of a sphere divided by radius of the
sphere squared gives us a convenient form for a differential element of solid angle, as needed
for computations. The blue patch shown in Fig. figure4 represents a differential element of
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Figure 3: Geometry associated with the definition of plane angle (panel a) and solid angle
(panel b).

Figure 4: Geometry used to obtain an element of solid angle in spherical coordinates.
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area dA on the surface of a sphere of radius r. Simple trigonometry shows that this area is
dA = (r sin θ dφ)(r dθ). Thus the element of solid angle dΩ(ξ̂) about the direction ξ̂ = (θ, φ)
is given in polar coordinate form by

dΩ(ξ̂) = &
dA

r2
=

(r sin θ dφ)(r dθ)

r2
= sin θ dθ dφ

= &dµ dφ (sr). (7)

(The last equation is correct even though dµ = d cos θ = − sin θ dθ. When the differential
element is used in an integral and variables are changed from (θ, φ) to (µ, φ), the Jacobian
of the transformation involves an absolute value.)

Example: Solid angle of a spherical cap
To illustrate the use of Eq. (align7), let us compute the solid angle of a “polar cap” of

half angle θ, i.e. all (θ′, φ′) such that 0 ≤ θ′ ≤ θ and 0 ≤ φ′ < 2π. Integrating the element
of solid angle over this range of (θ′, φ′) gives

Ωcap =

∫ 2π

φ′=0

∫ θ

θ′=0

sin θ′ dθ′ dφ′ = 2π(1− cos θ), (8)

or

Ωcap =

∫ 2π

φ′=0

∫ 1

µ′=µ

dµ′ dφ′ = 2π(1− µ). (9)

Note that Ξd and Ξu are special cases of a spherical cap (having θ = π/2), and that Ω(Ξd) =
Ω(Ξu) = 2π sr.

Dirac Delta functions

It is sometimes convenient to specify directions using the Dirac delta function, δ(ξ̂ − ξ̂o).
This peculiar mathematical construction is defined (for our purposes) by

δ(ξ̂ − ξ̂o) ≡ 0 if ξ̂ 6= ξ̂o, (10)

and ∫
Ξ

f(ξ̂)δ(ξ̂ − ξ̂o)dΩ(ξ̂) ≡ f(ξ̂o). (11)

Here f(ξ̂) is any function of direction. Note that δ(ξ̂ − ξ̂o) simply “picks out” the particular
direction ξ̂o from all directions in Ξ. Note also in Eq. (likesection11) that because the element
of solid dΩ(ξ̂) has units of steradians, it follows that δ(ξ̂− ξ̂o) has units of inverse steradians.

Equations (likesection10) and (likesection11) are a symbolic definition of δ. The math-
ematical representation of δ(ξ̂ − ξ̂o) in spherical coordinates (θ,φ) is

δ(ξ̂ − ξ̂o) =
δ(θ − θo)δ(φ− φo)

sin θ
(sr−1), (12)

where ξ̂ = (θ, φ), ξ̂o = (θo, φo), and
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∫ π

0

f(θ)δ(θ − θo)dθ ≡ &f(θo)∫ 2π

0

f(φ)δ(φ− φo)dφ ≡ &f(φo).

Note that the sin θ in the denominator of Eq. (likesection12) is necessary to cancel the sin θ
factor in the element of solid angle when integrating in polar coordinates. Thus

&

∫
Ξ

f(ξ̂)δ(ξ̂ − ξ̂o)dΩ(ξ) =

&

∫ 2π

0

∫ π

0

f(θ, φ)
δ(θ − θo)δ(φ− φo)

sin θ
sin θdθdφ =

&f(θo, φo) = f(ξ̂o).

Likewise, we can write

δ(ξ̂ − ξ̂o) = δ(µ− µo)δ(φ− φo) (sr−1), (13)

where ∫ 1

−1

f(µ)δ(µ− µo)dµ ≡ f(µo).
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