
The birth date of modern physics can be regarded as December 14, 1900, when Max
Planck presented his derivation of the spectral distribution of radiant energy in thermody-
namic equilibrium with matter at a given temperature. The derivation of this distribution is
both conceptually and mathematically subtle, and Max well deserved his subsequent Nobel
Prize. Planck’s function is commonly called the blackbody radiation spectrum.

As derived in most physics books (e.g., Liboff (1980), Chapter 2; or Eisberg and Resnick
(1985), Chapter 1), Planck’s function is expressed as a spectral energy density:

UE(ν) =
8πhν3

c3
1

ehν/kT − 1
, (1)

where ν is frequency in s−1, h = 6.626 070 15 ·10−34 J s is Planck’s constant, c = 2.997 924 58 ·
108 m s−1 is the speed of light in vacuo, k = 1.380 649 · 10−23 J K−1 is Boltzmann’s constant,
and T is the temperature in Kelvin. UE(ν) thus has units of J/(m3 s−1) = J/(m3 Hz), or
energy per unit volume per unit frequency interval (with frequency measured in Hertz =
cycles per second).

For ease of comparison with the Sun’s irradiance, or with the irradiance measured at the
entrance of a blackbody cavity, Eq. (1) can be converted to spectral plane irradiance as a
function of wavelength. The energy contained in a unit frequency interval dν must equal the
energy contained in the corresponding wavelength interval dλ, i.e.,

UE(ν)|dν| = UE(λ)|dλ| .

Recalling that ν = c/λ gives dν = −(c/λ2)dλ, and Eq. (1) becomes

UE(λ) = UE(ν)

∣∣∣∣dνdλ
∣∣∣∣ =

8πhc

λ5
1

ehc/λkT − 1
, (2)

which has units of has units of J/(m3 m), or energy per unit volume per unit wavelength
interval (with wavelength measured in meters).

The scalar irradiance Eo is related to the energy density by Eo = Uc. One way to see
this is to think of the many photons making up the energy density. How many photons “hit”
a small spherical detector per unit time, there to be recorded as scalar irradiance, equals
how many photons there are times how fast they are moving, i.e. Eo = Uc. Radiation in
thermodynamic equilibrium is isotropic and unpolarized. For isotropic radiance, Eo = 4Ed,
where Ed is the plane irradiance. Thus Eq. (2) can be converted to spectral plane irradiance
by a factor of c/4:

Ed(λ) =
c

4
UE(λ) =

2πhc2

λ5
1

ehc/λkT − 1
. (3)

This is the form of Planck’s law seen, for example, in Leighton (1959), page 65.
Two final transformations of Eq. (3) are needed for comparison with the Sun’s solar

irradiance as measured at the top of the earth’s atmosphere, as seen in Figs. (1) and (2)
of the next page on light from the Sun. First, in accordance with the r2 law for irradiance,
the irradiance emitted at the Sun’s surface (presumed to be a blackbody in the present
discussion) is reduced by a factor of (RSun/REarth)2 to obtain the irradiance at the mean
distance of the earth’s orbit. Here REarth = 1.496 · 108 km is the radius of the Earth’s orbit,
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and RSun = 6.95 · 105 km is the Sun’s radius. Finally, a factor of 10−9 is applied to Eq. (3) to
convert the wavelength spectral interval from meters to nanometers. The resulting equation
is

Ed(λ) =

(
RSun

REarth

)2
2πhc2

λ5
1

ehc/λkT − 1
10−9 , (4)

where Ed(λ) is now in W m−2 nm−1, although the wavelength is still measured in meters on
the right-hand side of the equation for consistency with the SI units for h, c and k.

Integrating Eq. (3) over all wavelengths gives the total plane irradiance emitted by a
black body:

Ed = σT 4 , (5)

where σ = (2π5k4)/(15h3c2) = 5.6703 · 10−8 W m−2 K−4 is the Stefan-Boltzmann constant.
The Sun’s total (over all wavelengths) irradiance as measured at the top of the atmosphere
is approximately 1368 W m−2. Carrying this value back to the Sun’s surface via a factor
of (REarth/RSun)2 and inserting the result into Eq. (5) gives a corresponding black body
temperature of T = 5, 782 K. That is, a black body at this temperature emits the same
total irradiance as does the Sun. This temperature is then used in Eq. (4) to generate the
blackbody spectra seen in the figures of the Light from the Sun page.

Other forms of the blackbody spectrum are sometimes useful. As already noted, black-
body radiation is isotropic. For isotropic radiance Lo, Ed = πLo, where π has units of
steradian. Thus formula (3) for plane irradiance can be converted to a formula for black-
body radiance LBB by dividing by π:

LBB(λ) =
2hc2

λ5
1

ehc/λkT − 1
. (6)

For some applications it is useful to know the photon density or photon irradiance. The
photon density UQ is obtained from the energy density by dividing the energy density UE
by the energy hν of a single photon. Thus Eq. (1) gives

UQ(ν) =
8πν2

c3
1

ehν/kT − 1
, (7)

where UQ has units of photons/(m3 Hz). Similarly, Eq. (3) can be divided by the energy per
photon in wavelength units, hc/λ, to obtain the photon plane irradiance

Qd(λ) =
2πc

λ4
1

ehc/λkT − 1
, (8)

where Qd has units of photons/(s m2 m). Integrating this equation over all wavelengths gives
the total number of photons emitted per second per unit area by a blackbody:

Qd = σQT
3 , (9)

where σQ = (4.808πk3)/(h3c2) = 1.520 · 1015 photons s−1 m−2 K−3 is the photon equivalent
of the Stefan-Boltzmann constant. Thus the total energy emitted by a blackbody is pro-
portional to T 4, but the total number of photons emitted is proportional to T 3. As the
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temperature increases, the blackbody spectrum shifts toward the blue, and relatively fewer
more-energetic short-wavelength photons are needed to keep up with the increasing energy
output.

It is also common to use wavenumber ν̃ = 1/λ as the spectral variable. A change of
variables based on UE(ν)|dν̃| = UE(λ)|dλ| and dλ/dν̃ = −λ2 then gives

UE(ν̃) = UE(λ)

∣∣∣∣dλdν̃
∣∣∣∣ = 8πhcν̃3

1

ehcν̃/kT − 1
,

which has units of J/(m3 m−1), or energy per unit volume per unit wavenumber interval (with
wavenumber measured in 1/meters). Other formulas in terms of wavenumber are obtained
as before.

Table center1 summarizes various formulas for blackbody radiation. These cover ev-
erything needed for optical oceanography. However, the Spectral Calculations website has
much additional information about blackbody radiation, including such esoterica as how the
spectrum shifts if the blackbody source is moving at relativistic speeds.

Figure figure1 shows the energy and photon densities, and energy and photon irradiances,
for a temperature of T = 5782 K, corresponding approximately to the Sun’s surface temper-
ature. These curves were computed using the first four formulas in Table center1. It should
be noted that the energy spectra have their maxima at about 500 nm for this temperature,
whereas the photon spectra have their maxima at about 635 nm. That is, where the Sun’s
output is a maximum depends on what measure of the output is used, as well as on which
variable is used for the spectral density. This important matter is discussed further on the
page A Common Misconception.
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Figure 1: 1. Blackbody spectra for energy and photon densities, and for energy and photon
irradiances, for a temperature of 5782 K. The inset values give the totals over all wavelengths.
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Quantity & Spectral Variable & Units & Formula

Energy density & wavelength & J
m3 m

& UE(λ) = 8πhc
λ5

(
1

ehc/λkT−1

)
Photon density & wavelength & photons

m3 m
& UQ(λ) = 8π

λ4

(
1

ehc/λkT−1

)
Energy irradiance & wavelength & W

m2 m
& Ed(λ) = 2πhc2

λ5

(
1

ehc/λkT−1

)
Photon irradiance & wavelength & photons

s m2 m
& Qd(λ) = 2πc

λ4

(
1

ehc/λkT−1

)
Energy density & frequency & J

m3 Hz
& UE(ν) = 8πhν3

c3

(
1

ehν/kT−1

)
Photon density & frequency & photons

m3 Hz
& UQ(ν) = 8πν2

c3

(
1

ehν/kT−1

)
Energy irradiance & frequency & W

m2 Hz
& Ed(ν) = 2πhν3

c2

(
1

ehν/kT−1

)
Photon irradiance & frequency & photons

s m2 Hz
& Qd(ν) = 2πν2

c2

(
1

ehν/kT−1

)
Energy density & wavenumber & J

m3 m−1 & UE(ν̃) = 8πhcν̃3
(

1
ehcν̃/kT−1

)
Photon density & wavenumber & photons

m3 m−1 & UQ(ν̃) = 8πν2
(

1
ehcν̃/kT−1

)
Energy irradiance & wavenumber & W

m2 m−1 & Ed(ν̃) = 2πhc2ν̃3
(

1
ehcν̃/kT−1

)
Photon irradiance & wavenumber & photons

s m2 m−1 & Qd(ν̃) = 2πcν̃2
(

1
ehcν̃/kT−1

)
Table 1: 1. Blackbody radiation formulas for energy and photon density and for energy and
photon plane irradiance, in spectral units of wavelength λ, frequency ν, and wavenumber ν̃.
Formulas require wavelength in meters and wavenumber in 1/meters. Divide the Ed and Qd

formulas by π to obtain formulas for blackbody radiances.
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