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    The BRDF as a PDF



    Equation (4) of The BRDF page,


   	

         Lr(𝜃r,ϕr) = ∫
 2πiLi(𝜃i,ϕi)BRDF(𝜃i,ϕi,𝜃r,ϕr) cos 𝜃idΩi,



   shows how the BRDF is used in the radiative transfer equation (e.g., in
HydroLight), which is always working with radiances. In Monte Carlo simulations,
you are tracking many individual rays as they interact with the medium and its
boundary surfaces. In this case, the BRDF must be used as a probability
distribution function (PDF) to determine the direction and weight of the reﬂected
ray whenever a ray hits the boundary surface. This is a tricky business, and the
step-by-step process is as follows.


   Computing the Reﬂected Ray Weight and Direction from a BRDF

Given: A ray with weight wi
is incident onto the surface in direction
(𝜃i,ϕi). The
BRDF of the surface is known.

   Needed: The weight wr
and direction (𝜃r,ϕr)
of the reﬂected ray.

   Since the input direction (𝜃i,ϕi)
is known, BRDF(𝜃i,ϕi,𝜃r,ϕr)
can be viewed as an (unnormalized) bivariate PDF for the reﬂected angles
                                                                          

                                                                          
𝜃r and
ϕr. Note
that, in general, these angles are correlated. Proceed as follows:


      
	
   1. 
	Compute the directional-hemispherical reﬂectance for the given (𝜃i,ϕi):
      
      

   ρdh(𝜃
i,ϕi) =    ∬2πiBRDF(𝜃i,ϕi,𝜃r,ϕr) cos 𝜃rdΩr                       
    =             ∫
 02π ∫
 0π∕2BRDF(𝜃
i,ϕi,𝜃r,ϕr) cos 𝜃r sin 𝜃rd𝜃rdϕr.      (1)

      
	
   2. 
	The reﬂected ray weight is then 	 
      
                                      wr = ρdh(𝜃
i,ϕi)wi.
	(2)


                                                                          

                                                                          
      
	
   3. 
	Compute the cumulative distribution function (CDF) for
      ϕr
      by
      	 
      
    CDFϕ(ϕr) =       1 
ρdh(𝜃i,ϕi) ∫
 0ϕr
      ∫
 0π∕2BRDF(𝜃
i,ϕi,𝜃,ϕ) cos 𝜃 sin 𝜃d𝜃dϕ.
	(3)


      Note that the directional-hemispherical reﬂectance is being used
      to convert the BRDF into a normalized bivariate PDF for
      𝜃r and
      ϕr. We are then “integrating
      out” the 𝜃r dependence
      to leave a PDF for ϕr,
      which is then being used to construct the CDF for
      ϕr.
      

	
   4. 
	Draw a random number ℜ
      from a uniform [0,1] distribution. Solve the equation
      	 
                                                                          

                                                                          
      
                                        ℜ = CDFϕ(ϕr)
	(4)


      for ϕr.
      This is the randomly determined azimuthal angle of the reﬂected
      ray.
      

	
   5. 
	Compute the CDF for angle 𝜃r
      from
      	 
      
                CDF𝜃(𝜃r) =   ∫
 0𝜃rBRDF(𝜃
i,ϕi,𝜃,ϕr) cos 𝜃 sin 𝜃d𝜃 
∫
 0π∕2BRDF(𝜃i,ϕi,𝜃,ϕr) cos 𝜃 sin 𝜃d𝜃.
	(5)


      Note that the angle ϕr
      determined in step 4 is used in the BRDF in Eq. (5) when evaluating the
      𝜃
      integrals. This is how the correlation between
      𝜃r and
      ϕr
      is accounted for in the determination of the reﬂection angles.
      

	
   6. 
	Draw a new random number ℜ
      from a uniform [0,1] distribution and solve the equation
      	 
                                                                          

                                                                          
      
                                        ℜ = CDF𝜃(𝜃r)
	(6)


      for 𝜃r.
      This is the randomly determined polar angle of the reﬂected ray. You can
      now send the new ray on its way.


      


   For all but the simplest BRDFs, Eqs. (1) to (6) all must be evaluated
numerically for each ray, which can be an enormous computer cost when billions
of rays are being traced.




   A Simple Example

The Minnaert BRDF is


   	 

               BRDFMinn(𝜃i,ϕi,𝜃r,ϕr) = ρ 
π cos 𝜃i cos 𝜃r k.
	(7)


                                                                          

                                                                          
   [Comment: This BRDF was invented to explain the curious fact that the full
moon appears almost uniformly bright from the center to the edge of the
lunar disk. If the lunar dust were a Lambertian reﬂector, the full moon
would appear bright at the center and darker at the edge. However, the
Minnaert BRDF agrees with observation over only a limited range of
angles.]

   Note that for k = 0
this reduces to the Lambertian BRDF. Equations (1) to (6) can be evaluated
analytically for the Minnaert BRDF. Equation (1) evaluates to


   	

                            ρdh =   2ρ 
k + 2 cos k𝜃
i,



   which reduces to ρdh = ρ
for a Lambertian surface. Equation (3) gives just


   	
                                                                          

                                                                          

                             CDFϕ(ϕr) = ϕr 
2π.



   Inserting this into Eq. (4) and solving for
ϕr
gives


   	

                                ϕr = 2πℜ.



   Thus the azimuthal angle is uniformly distributed over
2π radians. The
CDF for 𝜃r
as given by (5) is


   	
                                                                          

                                                                          

                        CDF𝜃(𝜃r) = 1 − cos k+2𝜃
r.



   Equation (6) then gives


   	

                            𝜃r = cos −1 ℜk + 2 ,



   after noting that 1 −ℜ has the
same uniform distribution as ℜ.
For a Lambertian surface, the randomly generated
𝜃r angles are
distributed as  cos −1(ℜ),
which certainly is not intuitive. However, this distribution is precisely what is
necessary to make the number of reﬂected rays per unit solid angle proportional
to  cos 𝜃r, as
required for a Lambertian surface. See the additional discussion of this on the
Lambertian BRDFs page.
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