
Deep in homogeneous, source-free waters the radiance distribution L(z, θ, φ) approaches
a shape L∞(θ) that depends only on the IOPs. Moreover, the radiance distribution at great
depth decays in magnitude exactly exponentially with a decay rate K∞ that, once again,
depends only on the IOPs. The shape L∞(θ) is called the asymptotic radiance distribution,
and K∞ is called the asymptotic decay rate or the asymptotic K function. L∞(θ) and K∞
depend on the wavelength λ via the wavelength dependence of the IOPs; the wavelength is
omitted here for brevity. An asymptotic radiance distribution exists only if the IOPs do not
depend on depth (homogeneous water) and if there is no inelastic scatter or bioluminescence
contributing to the radiance (source-free water). Preisendorfer (1976) (in Hydrologic Optics,
vol. 5, page 212) and Højerslev and Zaneveld (1977) give rigorous mathematical proofs that
L∞(θ) and K∞ exist for any physically realistic phase function and single-scattering albedo.

These statements imply that the directional and depth dependencies of the radiance dis-
tribution decouple at great depths. That is to say,

L(z, θ, φ) −−−→
z→∞

L∞(θ) exp(−K∞ z) . (1)

This in turn implies that all irradiances decay in the asymptotic regime at the same rate
as the radiance. For example,

lim
z→∞

Ed(z) = &

∫ 2π

0

∫ π/2

0

L∞(θ) exp(−K∞z) cos θ sin θ dθ dφ

= &

[
2π

∫ π/2

0

L∞(θ) cos θ sin θ dθ

]
exp(−K∞z)

≡ &Ed(∞) exp(−K∞z) .

We can compute corresponding values for Eu, Eod, and Eou. Clearly, each of these
irradiances has the same asymptotic K function. Using these asymptotic irradiances, we can
compute asymptotic values for any apparent optical property. For example, we have

R∞ ≡
Eu(∞)

Ed(∞)
.

Note that any normalization factor in L∞(θ) divides out when computing AOPs.
Because the asymptotic radiance L∞(θ) is determined solely by the IOPs, it follows that

any quantity computed from L∞(θ) is also in IOP. Therefore all apparent optical properties
become inherent optical properties in the asymptotic regime. The K ’s, µ’s, R’s, and their ilk,
which are influenced by boundary conditions near the water surface, all approach values at
depth that are independent of the boundary conditions.

An Integral Equation for the Asymptotic Radiance Dis-

tribution

The obvious question is, “How do you computed the asymptotic radiance distribution and
the asymptotic decay rate, given the IOPs?” One way is to recall the RTE for homogeneous,
source-free water
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cos θ
dL(z, θ, φ)

dz
= −&c L(z, θ, φ)

+&

∫ 2π

0

∫ π

0

L(z, θ′, φ′) β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ ,

and assume that the radiance has the form seen in Eq. (1). This gives an integral equation
for the shape L∞(θ) and decay rate K∞ of the asymptotic radiance distribution:

(c − K∞ cos θ)L∞(θ) =

∫ 2π

0

∫ π

0

L∞(θ′) β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ . (2)

(Note that since the scattering angle ψ depends only on cos(φ− φ′), we can set φ = 0 in
this equation, so that the result is a function only of θ.) This equation is often written in
terms of µ = cos θ and a nondimensional asymptotic decay rate κ∞ = K∞/c as

(1 − κ∞µ)L∞(µ) = ωo

∫ 2π

0

∫ 1

−1
L∞(µ′) β̃(µ′, φ′ → µ, φ) dµ′ dφ′ . (3)

Given the IOPs c and β for Eq. (likesection2) or ωo and β̃ for Eq. (likesection3), we can
solve either of these equations for the corresponding L∞ and K∞ or κ∞. Another form of
Eq. (likesection3), often seen in the literature, is

(1 − κ∞µ)L∞(µ) = 2πωo

∫ 1

−1
L∞(µ′)h(µ′, µ) dµ′ ,

where h(µ′, µ) is the azimuthally averaged phase function

h(µ′, µ) ≡ 1

2π

∫ 2π

0

β̃(µ′, φ′ → µ, φ) dφ′ .

For the idealized case of isotropic scattering, β̃ = 1/4π and the solution of Eq. (likesection3)
has the simple form

L∞(µ) =
1− κ∞

1− κ∞µ
, (4)

where L∞(µ) is normalized to 1 at µ = 1 (or at the nadir direction θ = 0). This L∞(µ)
has the shape of an ellipse whose major axis is oriented vertically. The corresponding value
of κ∞ is the solution of the transcendental equation

1 =
ωo

2κ∞
ln

(
1 + κ∞
1− κ∞

)
,

as can be seen by substitution of Eq. (likesection4) into Eq. (likesection3).
Kattawar and Plass (1976) obtained an analytic solution of Eq. (likesection3) for the

Rayleigh phase function β̃ = (3/16π)(1 + cos2 ψ). However, for other phase functions, in
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particular for those characteristic of oceanic waters, the solution of Eq. (likesection2) or
(likesection3) must be obtained numerically.

Solving the integral Eq. (likesection2) is mathematically equivalent to solving a certain
eigenmatrix equation for its eigenfunctions (which give L∞) and eigenvalues (which give K∞).
The eigenmatrix approach is described in Light and Water (1994) section 9.6. (HydroLight
uses the eigenmatrix approach to obtain its asymptotic values. The excellent agreement
between the asymptotic values computed by the eigenmatrix method and the approach with
depth to those values, as obtained by independent numerical solution of the RTE, is an
excellent check on the correctness of the HydroLight code.)

Dependence of Asymptotic Values on Inherent Optical

Properties

As just seen, the two asymptotic properties L∞ and K∞ are determined solely by the IOPs c,
ωo and β̃. Figure figure1 shows how the nondimensional asymptotic decay rate κ∞ = K∞/c
depends on the albedo of single scattering ωo for three phase functions. The dotted line is for
the pure water phase function β̃w; the dashed line is for a Henyey-Greenstein phase function
β̃HG with an asymmetry parameter g = 0.7; and the solid line is for a Petzold “average-
particle” phase function β̃p, which is typical of phase functions for oceanic particles. The
squares show experimental data taken in laboratory suspensions containing milk (Timofeeva
and Gorobetz, 1967). The fat globules in milk are large (� λ), efficient scatterers, which
explains the similarity between the milk solution and the β̃p phase function, which is typical
of particle-laden natural waters.

Figure 1: Dependence of κ∞ on ωo for selected phase functions. The solid line is for β̃p, the
dashed line is for β̃HG, and the dotted line is for β̃w. The squares are the data of Timofeeva
and Gorobetz (1967)

Figure figure2 shows the shape of L∞(θ) as a function of ωo for the average-particle
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phase function β̃p. Since it is the shape that is determined by the IOPs, it is customary
to normalize L∞(θ) to one for the nadir radiance direction (looking upward in the zenith
direction). The viewing angle θv as plotted is the angle in which an underwater observer
would look in order to see radiance traveling in direction θ = 180◦ − θv; θv and θ are both
measured from the +ẑ, or nadir, direction. Thus, θv = 180◦ corresponds to looking toward
the zenith and seeing radiance heading straight down (θ = 0). As we would expect, in highly
scattering water (large ωo) the upwelling radiance is relatively much greater than in weakly
scattering water (small ωo). Corresponding curves for the Rayleigh phase function can be
seen in Kattawar and Plass (1976). Prieur and Morel (1971) show such curves as a function
of the relative contributions by molecular and particle scattering, i.e., for phase functions
that are in between β̃w and β̃p.

Figure 2: Shape of the asymptotic radiance distribution L∞(θ) as a function of ωo, for the
particle phase function β̃p. The viewing angle θv is 180◦ − θ, as discussed in the text.

Figure figure3 shows the asymptotic mean cosines and irradiance reflectance for the same
phase functions used in Fig. figure1.

Rate of Approach to Asymptotic Values

The asymptotic values are determined solely by the IOPs of a homogeneous water body.
However, how quickly a given quantity approaches its asymptotic value depends on both
the IOPs and the boundary conditions. We have already seen this in the discussion of K
functions, but a few more examples will be instructive. HydroLight was run for Case 1
water with a chlorophyll concentration of Chl = 1.0 mg m−3. The wavelength was 443 nm.
The corresponding IOPs (including water) were a = 0.0680 m−1, b = 0.4346 m−1, so that
c = 0.5026 m−1. Thus one meter of geometric depth is about 0.5 optical depths. The albedo
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Figure 3: Asymptotic values of the mean cosines and of the irradiance reflectance, as a
function of ωo, for various phase functions. The solid, dashed, and dotted lines correspond
to those of Fig. figure1.
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of single scattering is then ωo = b/c = 0.8648, and the total backscatter fraction was 0.1253.
Figure figure4 shows Kd at 443 nm for four different surface boundary conditions:

• the Sun is at the zenith in a clear sky (θsun = 0) and the sea surface is level (wind
speed U = 0)

• the Sun is at a 50 deg zenith angle in a clear sky (θsun = 50) and the sea surface is
level (U = 0)

• the Sun is at a 50 deg zenith angle in a clear sky (θsun = 50) and the sea surface is
wind blown, with a wind speed of 10 m/s (U = 10)

• the sky has a cardioidal radiance distribution, L(θ, φ) = Lo(1 + 2 cos θ), 0 ≤ θ ≤ π/2,
which is similar to a heavy overcast through which the location of the Sun cannot be
determined, and the sea surface is wind blown, with a wind speed of 10 m/s (U = 10)

The curves of Fig. figure4 show the boundary effects on the rate of approach to the
asymptotic value of K∞ = 0.1075 m−1, which depends only on the IOPs. The curve for the
heavily overcast sky approaches K∞ the quickest. The physical reason is that the overcast
sky radiance is already a diffuse radiance distribution, so that less scattering (i.e., less prop-
agation to depth) is required to redirect the initial photon directions towards the asymptotic
angular distribution within the water. The other cases with the sun in a clear sky have a
strongly collimated incident radiance distribution, which requires more scattering (a deeper
depth) to “erase the memory” of where the sun is in the sky and achieve the asymptotic
shape of L∞(θ) . For the 50 deg Sun zenith angle, the surface roughness makes a noticeable
but minor difference.

Figure figure5 shows the corresponding results for the approach of the irradiance re-
flectance R = Eu/Ed to its asymptotic value of R∞ = 0.0406.

Fig. figure6 shows the mean cosines µd, µu, and µ.
Finally, Fig. figure7 shows the approach of measured and modeled radiances to the

asymptotic shape. The dots are radiances measured in the azimuthal plane of the Sun by
Tyler (1960) at the depths indicated. The blue curves are the corresponding HydroLight sim-
ulation. The measured data were published only as relative values. Therefore, the radiances
are normalized for plotting to a value of 1 in the nadir-viewing direction (θv = 0) at depth
4.2 m. The φv = 0 direction is looking toward the sun, and φv = 180 is looking away from
the sun. The red curve shows the shape of L∞, normalized to the nadir-viewing measured
value at 66.1 m. The data are described in detail in Tyler’s report, and the modeling is
described in Light and Water (1994) section 11.1. Given the uncertainties in the measured
data and the educated guesses that had to be made about unmeasured inputs needed by
HydroLight, the overall agreement between data and model predictions is quite good.

Near the surface, the Sun’s location is obvious and the unscattered direct beam gives a
large spike in the radiance. At 29.0 m, the sun’s azimuthal direction can still be discerned,
but the large spike of the direct beam has been removed by scattering. By 66.1 m, there is
only a slight asymmetry remaining to indicate the sun’s azimuthal direction. Clearly, both
the measured and modeled radiances are close to the asymptotic shape at 66.1 m, which was
about 26 optical depths.
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Figure 4: Approach of Kd to K∞ for one set of IOPs and different sea-surface boundary
conditions, as described in the text.
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Figure 5: Approach of R to R∞ for one set of IOPs and different sea-surface boundary
conditions, as described in the text. The color-coded curves correspond to those of Fig.
figure4.
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Figure 6: Approach of the mean cosines µd, µu, and µ to their respective asymptotic values.
The color-coded curves correspond to those of Fig. figure4.
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Figure 7: Approach of measured and modeled radiances to L∞. The dots are radiances
measured at the depths indicated. The blue curves are the HydroLight simulation, and the
red curve is L∞. Measured and modeled radiances are normalized to 1 for the nadir-viewing
direction at 4.2 m depth. L∞ is normalized to the nadir-viewing radiance at 66.1 m.

10


