
The Cox-Munk Sea Surface Slope Statistics

Cox and Munk (1954a) and Cox and Munk (1954b) analyzed aerial photographs of the Sun’s
glitter patterns on wind-blown sea surfaces, from which they were able to deduce the slope
statistics of the sea surface as a function of the wind speed. (See also Cox and Munk (1955).)
Figure figure1 shows one such photograph. The wind speed, measured from a ship within
the area photographed, was 4.6 m/s.

Figure 1: A glitter pattern photograph for a wind speed of 4.6 m/s. The view is looking
azimuthally toward the Sun and downward at the sea surface from an altitude of 2,000 feet
(610 m). The Sun’s glitter pattern is the central bright area. The upper left and right areas
are glint from the background sky or perhaps from clouds. The superimposed grid shows
lines of constant wave facet tilt β and azimuth α as described in the text and in Fig. figure2.

If the surface were perfectly flat (i.e., zero wind speed and no swell) and the sky were
black, the glitter pattern would be a single bright spot at the Sun’s specular reflection
direction, which is at the center of the photograph. However, wind ruffles the sea surface
so that the Sun’s direct beam can be reflected from a wider area of the sea surface into the
observer’s direction. In order for a wave facet to reflect a solar ray towards the observer,
the facet must be tilted in just the right way so that the tilted facet can reflect an incident
ray from the Sun into the direction of the observer. This is illustrated in Fig. figure2. The
blue triangle represents a tilted wave facet that is reflecting an incident solar ray ξ̂′ into the
observer’s direction ξ̂. The (x̂, ŷ, ẑ) coordinate system shown by the green arrows is a Sun-
centered system with −x̂ pointing horizontally towards the Sun, ẑ vertically upward (normal
to the mean sea surface), and ŷ = ẑ × x̂. The Sun’s incindent ray ξ̂′ = (ξ′x, ξ

′
y, ξ
′
z) thus has

ξ′x > 0, ξ′y = 0, and ξ′z < 0. n̂ is the normal to the tilted facet. Polar angle β = cos−1(n̂ · ẑ)
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measures the tilt of the facet from the normal to the mean sea surface. Azimuthal angle α
measures the orientation of the facet relative to the x̂ axis, with α being measured clockwise
from x̂ as shown.

[Comment: The analysis of the glint photographs requires several coordinate systems.
One is Sun-centered, as seen in Fig. figure2. Another system is used to define the image plane
of the camera recording the glitter patterns. Use of the surface statistics to be presented
below for generation of random realizations of wind-blown surfaces requires a wind-centered
system (̂i, ĵ, k̂), with î pointing downwind, ĵ cross-wind, and k̂ = ẑ. Figure figure2 shows the
(x̂, ŷ, ẑ) system as used in Preisendorfer and Mobley. The Sun system used in the Cox and
Munk papers has ŷ pointing horizontally toward the Sun, with α measured from ŷ “to the
right of the Sun.” Conversion from one system to the other is straightforward but tedious
trigonometry; the details are given in Section 7(a) of Preisendorfer and Mobley (1985) and
inPreisendorfer and Mobley (1986) . Fortunately, these details do not concern us here.]

Figure 2: The image of Fig. figure1 with an illustration of a tilted wave facet (blue triangle)
reflecting an incident solar ray ξ̂′ into the direction ξ̂ of an observer.

Let η(xa, xc) be the sea surface elevation in a wind-centered coordinate system where xa
is in the along-wind direction (with xa positive in the downwind or î direction) and xc is in
the cross-wind direction (with xc positive in the ĵ direction). Then

ηa =
∂η

∂xa
and ηc =

∂η

∂xc

are respectively the sea surface slopes in the along-wind and cross-wind directions. After
laborious analysis of numerous photographs for different solar zenith angles and wind speeds,
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Cox and Munk found that the statistical distribution of the random sea surface slopes ηa
and ηc is, to a good approximation, a bivariate Gaussian:

p(ηa, ηc) =
1

2πσaσc
exp

[
−1

2

(
η2a
σ2
a

+
η2c
σ2
c

)]
(1)

where σ2
a and σ2

c are respectively the variances of the slopes in the along-wind and cross-
wind directions. Note that p(ηa, ηc) is normalized as required for a probability distribution
function, i.e., ∫ ∞

−∞

∫ ∞
−∞

p(ηa, ηc) dηa dηc = 1 .

These slope variances were found to be related to the wind speed U in meters per second at
“mast height” (41 feet or 12.5 m) by

σ2
a = &0.000 + 3.16 · 10−3U ± 0.004, r = 0.945 (2)

σ2
c = &0.003 + 1.92 · 10−3U ± 0.002, r = 0.956 (3)

σ2 = σ2
a + σ2

c = &0.003 + 5.12 · 10−3U ± 0.004, r = 0.986 (4)

Equations 1-4 are the celebrated Cox-Munk wind speed-wave slope statistics. The non-zero
value of σ2

c at zero wind speed results from a residual amount of slope that is not attributable
to the local wind. This contribution to σ2

c is often ignored when modeling sea surfaces, so
that a wind speed of zero corresponds to an exactly flat sea surface.

Duntley (1954) used closely spaced vertical wires to measure surface elevations at the two
wires, from which the slope could be obtained. His measurements were consistent with the
values obtained by Cox and Munk. Several later studies have found some dependence on the
air-sea temperature difference, i.e., on the atmospheric stability, although sometimes with
conflicting conclusions, perhaps because the sea states were not in a mature state for the
given wind speed. The slope variances are also sensitive to the presence of films (e.g., from
oil) that tend to dampen waves, especially at the smallest spatial scales. Cox and Munk
themselves did measurements within areas where they had poured a mixture of oils onto the
sea surface; those values are found in the papers cited. Regardless of potential improvements
to the Cox and Munk values, the original values of the slope variances are widely used, e.g.
they are one option for surface generation in the HydroLight radiative transfer code, and
they are used by NASA for atmospheric correction. The numerous successful applications
of the Cox-Munk equations have proven that their values are sufficiently accurate for a wide
range of conditions.

It should be noted that the Cox-Munk statistics are based on observations, so they de-
scribe the slope effects of whatever waves were on the sea surface at the times the photographs
were taken. They thus describe the full range of long-wavelength gravity to short-wavelength
capillary waves for the sea states at the time of observation. Note, indeed, the obvious
presence of long-wave swell at the lower right of Fig. figure1. It is often stated (e.g., in
Preisendorfer and Mobley (1985) and in Section 4.3 of Light and Water (1985)) that these
slope statistics refer to capillary waves, which is incorrect. Capillary waves are responsible
for much of the slope variance, and they are included in the Cox-Munk statistics, but the
gravity waves are also included.
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Sea Surface Simulations

Preisendorfer and Mobley (1985) and (1986) showed how to use the Cox-Munk statistics to
generate random realizations of wind-blown sea surfaces (see also Section 4.3 of Light and
Water (1994)). The mathematical details need not be repeated here, but the procedure is
as follows. First, they divide a hexagonal patch of sea surface into triangluar wave facets.
Then the Cox-Munk along-wind and cross-wind variances are used in conjunction with a
random number generator to define, for a given wind speed, the relative surface elevations
at the vertices of the triangular wave facets. The slopes of the resulting surface facets then
reproduce, on average, the slope statistics of a real sea surface. Figure figure3 shows an
example of such a surface realization for a wind speed of 10 m/s. These Cox-Munk surfaces
are “scale independent.” That is, only the slopes matter, not the actual physical size of the
patch of surface. Thus no units are shown for the axes. Note that, in this figure, the vertical
scale (the surface elevations) is greatly expanded relative to the horizontal scales (the x axis
is the along-wind direction, and the y axis is the cross-wind direction).

Figure 3: Example of a Cox-Munk sea surface for a wind speed of U = 10m s−1. High surface
elevations (above the mean sea level of zero) are light blue; low elevations (below mean sea
level) are dark blue.

This technique does not reproduce the sea surface elevation statistics of a real sea surface.
Although the surface realization seen in Fig. figure3 correctly reproduces the Cox-Munk
slope variances, it simply does not look like a real sea surface. In particular, there is no
spatial correlation from one point on the surface to another nearby point, as occurs with real
water waves. However, both the elevation and slope statistics can be reproduced using more
advanced techniques, which are described in the Level 2 material of this chapter, starting at
Modeling Sea Surfaces. Those techniques are based on sea surface elevation variance spectra
and use fast Fourier transforms (FFTs); Here, surfaces generated by these techniques will
be called FFT surfaces for brevity. Figure figure4 shows an example surface constructed
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using the techniques of Level 2. The inset shows the mean square slopes in the along-wind
(mssx) and cross-wind (mssy) directions; these values correspond to σ2

a and σ2
c , respectively,

in the Cox-Munk equations. For a wind speed of 10 m s−1, the Cox-Munk equations give
σ2
a = 0.0316 and σ2

c = 0.0222, which agree well with the values shown in the figure for this
particular FFT surface realization. The value H1/3 = 2.14 m is the significant wave height,
which is in agreement with the wave heights for a mature sea at this wind speed. Note that
the figure axes are now in meters, because an actual 100 × 100 meter patch of sea surface is
being simulated, although the scale of the vertical axis is still exaggerated compared to the
horizonal scales.

Figure 4: Example realization of a 10 m s−1 sea surface constructed using the techniques
of the Level 2 pages of this chapter. This surface reproduces both the surface elevation
statistics and the slope statistics. Reproduced from Fig. 3.4 of Mobley (2016).

Optical Differences in Sea Surfaces

The obvious next question is this: How much do optical quantities such as the sea surface
reflectance or water-leaving radiance differ for a Cox-Munk surface like that of Fig. figure3
versus a more realistic FFT surface like that of Fig. figure4? This can be answered by
Monte Carlo simulation. In such simulations, a large number (often millions) of random sea
surface realizations are generated. For each surface, rays simulating the Sun and sky incident
radiance are sent toward the surface, where they are reflected and transmitted by the surface
wave facets according to the Fresnel equations applied to the point where a ray intersects
a wave facet. In this manner, the reflected and transmitted radiances are built up ray by
ray. The mathematical details of these computations are rather ugly; see Preisendorfer and
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Mobley (1985) or Appendix B of Mobley (2014) for a detailed description of a ray tracing
algorithm that fully accounts for the possibility of multiple scattering between wave facets.

Figure figure5 shows an example of a simulated solar glitter pattern created by ray tracing
and a Cox-Munk surface. In this figure, the final direction of each ray is plotted as a dot
where the ray intersects the image plane of a camera photographing the glitter pattern from
the air. The pattern of this simulated glitter pattern should be compared with central glitter
pattern of Fig. figure1. The two patterns are in qualitative agreement.

Figure 5: Monte Carlo simulation of a glitter pattern for the Sun at a 60 deg zenith angle
and a wind of 5 m s−1. The ψh and ψv axes refer to the coordinate system used to describe
the viewing direction in the image plane of the observer’s camera. In this figure, the glitter
pattern is being viewed ±30 degrees in the horizontal from the specular point, and from 30
deg above to 50 deg below the specular point. Reproduced from Preisendorfer and Mobley
(1986).

A feeling for the optical differences of various sea surfaces can be obtained by comparison
of their surface-reflected radiances, i.e., their glitter patterns. The left panel of Fig. figure6
shows the surface-reflected radiance for a Cox-Munk surface and a wind speed of 5 m s−1,
as generated by HydroLight. The Sun was at a zenith angle of 50 deg in a clear sky. The
Sun’s azimuthal angle was in the down-wind direction (the arrow at the middle of the plot
indicates the wind direction). The water IOPs were based on an albedo of single scattering
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Figure 6: HydroLight-computed surface-reflected radiances for a solar zenith angle of 50 deg
and a wind speed of 5 m s−1. Left panel: a Cox-Munk surface realizations; right panel: FFT
surfaces.

of 0.8 and the sky conditions were for a wavelength of 550 nm. The ray tracing that underlies
these calculations used 250,000 sea surface realizations; there is a negligible amount of Monte
Carlo noise in these results. The colors display contours of the radiance, with the lightest
color being the highest radiance; the contour spacing is not linear but was chosen for visual
effect. The light colored area at the right of the polar plot is the glitter pattern as would be
seen by an observer looking downward at the sea surface and facing the sun at an azimuthal
viewing angle of ϕv = 0. The concentric circles show off-nadir viewing angles of 30, 60, and
90 deg (the horizon). The radiance is largest near the horizon, rather than near the specular
direction, because of the large increase in the Fresnel reflectance for angles of reflection
greater than about 60 deg. The right panel of the figure shows the glitter pattern for an
FFT surface, with all else being the same.

Some differences in the glitter patterns can be seen in the contour plots of Fig. figure6,
but a more quantitative comparison can be made by plotting the radiances as a function
of polar angle in the plane of the Sun. This is done in Fig. figure7, using the data of Fig.
figure6. This plot shows that for viewing directions out to about 60 deg in the azimuthal
direction of the Sun, there is only a few percent difference in the surface-reflected radiances.
For viewing directions near the horizon, the difference increases to several tens of percent,
with the Cox-Munk surface having the ”brighter” glitter pattern near the horizon.

Figure figure8 shows the corresponding water-leaving radiances, which determine the
remote-sensing reflectance. Again, there is very little difference (at most a few percent) for
off-nadir viewing directions less than about 50 deg, which covers the range of most ocean-
color remote sensing. However, for viewing directions near the horizon, the difference in the
Cox-Munk and the FFT surface is again a few tens of percent.

The details of these comparisons will be different for different Sun zenith angles and
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Figure 7: Surface-reflected radiances in the plane of the Sun. Negative off-nadir viewing
directions θv correspond to looking away from the Sun (in the ϕv = 180 direction in Fig.
figure6; positive θv values correspond to looking toward the Sun.

Figure 8: Water-leaving radiances in the plane of the Sun, as in Fig. figure7.
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different wind speeds. However, it is generally true that the sea surface affects the water-
leaving radiance by only a few percent for the near-nadir viewing directions relevant to
most remote sensing. Surface effects are most prominent in the glitter patterns themselves.
There are also differences when the Sun is in the along-wind versus the cross-wind direction.
However, a full discussion of such matters is a topic for elsewhere.
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