
This page gives a numerical example of the Wiener-Khinchin theorem, which leads into
the details of how to sample autocovariance functions so that the resulting variance spectra
meet the needs for surface generation.

The blue curve of Panel (a) in Fig. figure1 plots the one-sided Pierson-Moskowitz spec-
trum (Eq. 2 of the Wave Variance Spectra: Examples page) for wind speed of U10 = 5m s−1.
Using this spectrum, surfaces are generated at N = 1024 points over a region of length
L = 100m. Note that N is a power of 2 as required for the use of the fast Fourier transform al-
gorithm. The spacing of these points is at intervals of ∆x = L/N = 0.0944m. The red dot at
ν1 = 1/L = 0.011/m is the fundamental frequency. The point at νN/2 = 1/(2∆x) = 5.121/m
is the Nyquist spatial frequency. The green vertical ticks show the locations of the remaining
N − 2 points, which are evenly spaced at intervals of ∆ν = 0.01 1/m.

These discrete samples of the variance spectrum are then used as described on the Spectra
to Surfaces: 1D page to create a random realization of the sea surface z(r) at N points.
One such surface, generated for a particular sequence of random variables, is shown in Fig.
figure1(c). The periodogram of this surface, computed via Eqs. (2) and (3) of the Surfaces
to Spectra: 1D page and Eq. (4) of the Spectra to Surfaces: 1D page, is shown in red in
Fig. figure1(b). The blue curve in this panel is the one-sided spectrum S1s(ν) of Panel
(a), replotted for reference. The statistical noise in the periodogram is Gaussian distributed
about the theoretical S1s(ν). These three panels of the figure are the essentially the same
as the figure on the Spectra to Surfaces: 1D page; the only difference is that the sequence
of random numbers used to generate the surface is different and linear axes are used for the
upper-right panel.

Equation (3) of Autocovariance Functions: Theory page applied to the z(r) of Panel (c)
gives the autocovariance shown in red in Panel (d). This curve contains statistical noise.
To obtain a theoretical curve for comparison, the Pierson-Moskowitz spectrum was sampled
at 2048 points to insure coverage of most of the spectrum. The discrete Wiener-Khinchin
theorem (Eq. 10 of the Autocovariance Functions: Theory page) was then used to obtain
the autocovariance from the discretely sampled spectrum:

Czz(`r) = D−1
ν {S2s(u)} = D−1

ν {S2s(ν = νu)∆ν} . (1)

Here the DFT was computed via Eq. (8) of the Fourier Transforms page. Note that the
discrete spectrum S2s(u) was obtained by sampling the continuous spectral density at the
desired ν values and then multiplying by the appropriate bandwidth. Because S2s(u) is
a real and even function of νu, its Fourier transform is also real and even. The result is
shown as the green curve in this Panel (d). Equation (5) of the Spectra to Surfaces: 1D
page gives the total variance of 〈z2〉 = 0.0197 m2 for U10 = 5 m s−1. The numerical result
obtained by sampling S2s(ν) and taking the inverse Fourier transform as just described gives
Czz(0) = 〈z2〉 = 0.0178 m2.

Latta and Bailie (1968) analytically computed the autocorrelation of the Pierson-Moskowitz
spectrum in temporal form, but the result is a formula of horrible complexity consisting of the
sum of five slowly converging infinite series, the terms of which are themselves are products
of infinite series. That paper plots the numerically evaluated result in terms of an unspecified
but normalized temporal lag, which makes comparison with the present results for spatial
lag quantitatively impossible. However, de Boer (1969) obtained the spatial covariance of
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Figure 1: Illustration of the Wiener-Khinchin theorem for a single realization of a random
sea surface.
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the Pierson-Moskowitz spectrum in the form of integrals of Bessel functions, which also re-
quire careful numerical evaluation. Figure figure2 shows their result for the autocovariance
function of waves in the down-wind direction. Their plot is in terms of a nondimensional
normalized lag distance ξN = (2g/U2)`. The green curve of Fig. figure1(d) has a minimum
of −0.0063m2 at ` = ±7.96m. This translates to an autocorrelation of -0.31 at a normalized
lag of ξN = 6.3. These value are in reasonable agreement with the minimum seen in Fig.
figure2, keeping in mind that the curves in that figure were themselves generated on a 1960’s
era computer by difficult numerical integrations of unknown accuracy. The agreements for
the variance and the location and magnitude of the minimum indicate that the numerically
computed CPM

zz (`) is probably correct for all lags. (This numerical calculation will be verified
again with greater accuracy in the discussion of the Horoshenkov spectra below, for which
the exact autocovariance is known.)

Figure 2: Fig. 7 from de Boer (1969): “Spatial correlation Function of Wind-Generated
Ocean Surface Waves in the Down-Wind Direction.” The normalized lag distance is ξN =
(2g/U2)`.

Taking the DFT of the green curve in Fig. figure1(d) should give the two-sided spectrum
S2s(ν) corresponding to the one-sided spectrum plotted in Panel (a). The green curve in
Panel (e) of that figure shows the result (after dividing by the finite bandwidth, as mentioned
previously), which is indeed one-half of the one-sided spectrum S1s(ν) (shown in blue). This
provides a check on the correctness of a round-trip Fourier transform.

Taking the DFT of the red curve in Panel (d) gives a sample estimate of S2s(ν), which
is shown in red in Panel (e). This curve has statistical noise, but it visually appears to be
distributed about the theoretical value given by the green curve.

The statistical noise inherent in any single random realization of the sea surface and
its autocovariance can be reduced by averaging the results from many surface realizations.
Figure figure3 is the same as Fig. figure1, except that Nsurf = 100 independent surfaces are
generated. This reduces the statistical noise by a factor of 1/

√
100. The red curve in Panel

(b) shows the ensemble average periodogram for the 100 surfaces. It is clear that the average
periodogram is in excellent agreement with the theoretical variance spectrum, except for a
small amount of remaining statistical noise.
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The red curve of Panel (d) is the average autocovariance for the 100 surfaces. This curve
is much closer to the theoretical (green) curve than the autocovariance for the single surface
of Fig. figure1(d). The DFT of this average autocovariance is shown by the red curve in
Panel (e). Again, this curve has much less noise and is closer to the (green) theoretical
spectrum.

The statistical noise in the ensemble averages can be made arbitrarily small by averaging
more and more surfaces. Figure figure4 shows that averages for 1,000 surfaces have noise
levels in the periodogram, autocovariance, and spectrum derived from the autocovariance,
that are almost unnoticeable at the scale of the figures.
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Figure 3: Same as Fig. figure1, but for 100 surface realizations. The red curve in Panel (d)
is the average of the autocovariances of the 100 surfaces. The red curve in Panel (e) is the
Fourier transform of the 100-surface average of Panel (d). Only the first surface is plotted
in Panel (c).
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Figure 4: Same as Fig. figure1, but for 1000 surface realizations. The red curve in Panel (d)
is the average of the autocovariances of the 1000 surfaces. The red curve in Panel (e) is the
Fourier transform of the 1000-surface average of Panel (d). Only the first surface is plotted
in Panel (c).
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