
This page shows exactly how the calculations underlying the first, third, and fourth
figures of the previous page were performed. The devil is in the details, and these details are
seldom (if ever!) discussed in the literature. Consider the case of N = 8, which will allow
individual points to be plotted. Of course, with so few sample points, the variance spectrum
is not adequately sampled and the resulting sea surface is unphysical because it has far too
little variance. However, the algorithms are the same for any value of N .

Consider first the generation of the random sea surface with N points. As discussed
previously, the two-sided spectrum must be sampled at exactly N spatial frequencies. The
green dots in Fig. figure1(b) show these points for the case of N = 8. The frequency values,
written in math order, are

{νu, u = 0, 1, ..., N − 1} =

[
−N

2
+ 1, ...,−1, 0, 1, ...,

N

2

]
∆ν , (1)

which for the choice of L = 100 m and N = 8 gives

{νu, u = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆ν , (2)

where ∆ν = 1/L = 0.01 m−1. Here braces {...} denote a set of frequencies labeled by
u values, and brackets [...] denote an array of frequency values as shown. Note that the
sampled frequencies are symmetric about ν = 0, except for one “extra” point at index
u = N − 1 or frequency (N/2)∆ν. This value is the Nyquist frequency, which in IDL is
stored as the last element of the frequency array in math order. Sampling the spectrum at
exactly this pattern of frequencies guarantees that the spectral amplitudes generated from
them are Hermitian, which in turn guarantees that the generated sea surface is real. The
red dots in Panel (c) of the figure show the 8 surface elevations generated for a particular
sequence of random numbers. The values are at xr = 0 to L − ∆x for r = 0 to N − 1.
Fourier-generated surfaces are inherently periodic, so that z(L) = z(0).

Now take the inverse DFT of the discrete spectrum given by the green dots in Panel
(b). The result is the autocovariance values shown by the green dots in Panel (d). It is
important to note that these N = 8 lag values follow the same pattern (in math order) as
the frequencies:

{`r, r = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆x , (3)

where now ∆x = L/N = 12.5m. The lags are symmetric about ` = 0, except for one “extra”
point at (N/2)∆x. This is analogous the one extra value in the frequency spectrum at the
Nyquist frequency. Taking the forward DFT of these 8 autocovariance values as in Eqs. (10)
and (11) on the Autocorrelation Functions: Theory page gives the green points plotted in
Panel (e). These values are of course exactly the 8 points of the original spectrum, as shown
by the green dots in Panel (b). This is just a check on the correct implementation of the
round-trip calculation of inverse and forward Fourier transforms.

Now suppose that we wish to compute the autocovariance of the surface elevations, and
from that obtain an estimate of the variance spectrum via the Wiener-Khinchin theorem.
This provides a more stringent test of the calculations because of the intermediate sea surface
in between the variance spectrum and the autocovariance. The crucial observation is that
when calling the IDL autocovariance routine A CORRLELATE, that routine must be given
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Figure 1: Illustration of sampling strategy for N = 8 sample points.
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an array of the requested lag indices (lags in units of ∆x) as seen in Eq. (equation3). Thus
for an array of surfaces,

zsurf = [z(r = 0), z(r = 1), ..., z(r = 7)] , (4)

an array of lags
lagindex = [−3,−2,−1, 0, 1, 2, 3, 4] , (5)

must be defined. The call to the IDL routine is then

Czz = A CORRLELATE(zsurf, lagindex, /COVARIANCE) . (6)

The IDL routine then returns an array of autocovariances at the lags shown in Eq. (equa-
tion3). These values are shown by the red dots in Fig. figure1(d). This Czz array returned
by A CORRLELATE has the same math order as the lagindex array. This array must next
be shifted into the FFT order via the IDL shift function:

CzzFFT = SHIFT(Czz,−N/2 + 1) . (7)

This array can now be given to the IDL FFT routine:

S2s = FFT(CzzFFT) . (8)

The resulting S2s array is a complex 8-element array. The real part of S2s is S2s(u), with
the frequencies in FFT order. The imaginary part is zero (to within a bit of roundoff error;
values are typically less than 10−10). This array is shifted back to math order and divided
by ∆ν to get the array plotted as the red dots in Panel (e) of the figure:

S2splot = REAL PART(SHIFT(S2s, N/2− 1))/∆ν . (9)

It is always informative to take an “information count” of such operations. We started
with a two-sided spectrum of 8 values. It is true that in the present time-independent simula-
tions S2s(−ν) = S2s(+ν) (except for the 0 and Nyquist frequencies, which are always special
cases). However, this symmetry need not hold in general (and indeed is not the case when
generating waves that propagate downwind, as explained previously). Thus these spectrum
values represent 8 independent “pieces” of information in the form of 8 real numbers.

The 8 elevations of the sea surface are likewise 8 independent pieces of information.
Finally, the 8 covariances also comprise 8 pieces of information. Similarly to the variance

spectrum, there is symmetry about the 0 lag, except for the value at the largest positive lag.
However, again, the fact that Czz(−`r) = Czz(+`r) represents two pieces of information: the
value of Czz(+`r) and the fact that Czz(−`r) has the same value.

Thus the sampled variance spectrum S2s(u), the generated surface z(r), and the surface
autocovariance Czz(r) all contain the same amount of information, namely 8 real numbers.
The various Fourier transforms and autocorrelation function show how to convert the infor-
mation from one form to another.
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Idle Speculations

It is certainly possible to sample in different ways. For example, surface correlations can be
computed for all lags from −L + ∆x to +L−∆x, which gives 2N − 1 total Czz(`r) values.
You can then take the FFT of that covariance and get a spectrum with 2N − 1 values.
However, I can guarantee you from two weeks of misery that the spectrum so obtained does
not agree with the original S2s(ν) spectrum. The N − 1 extra points added by taking a
greater range of correlations are in some way not independent of or consistent with the N
independent pieces of information tallied above. That is to say, the sea surface contains
only N pieces of information, and you cannot create more information simply by computing
the autocovariance at more lag values. I vaguely remember reading somewhere that you
should not compute autocovariances for lags greater than one-half of the data range. Note
that the lag indices used above run from values of (−N/2 + 1)∆x to (N/2)∆x, which indeed
correspond to the −L/2+∆x to +L/2 data range. I suspect, but have never seen stated, that
there is something going on here that is analogous to sampling at greater than the Nyquist
frequency—You can do it, but it messes up the results in ways that are not immediately
obvious.

Another possible way to compute the autocovariance for a given sea surface is to compute
Czz(`r) only for 0 and positive lags out to a maximum possible lag of L −∆x. This would
again give N independent numbers. Autocovariances are real and even functions of the
lag (symmetric about ` = 0), which means that their Fourier transforms are also real and
even. Since eiθ = cos θ + i sin θ, a Fourier transform can be written as the sum of a cosine
transform plus i times a sine transform: F{·} = C{·} + iS{·}. Here the cosine transform
C is defined as in Eq. (1) of the Fourier Transforms page except that e−i2πνx is replaced by
cos(2πνx); the sine transfrom S is defined in the same way but with sin(2πνx) replacing
e−i2πνx. For an even function, the sine components in the Fourier transform will all be zero.
Thus it seems that the Wiener-Khinchin theorem could be written as C{Czz(`)} = S2s(ν).
An example of this was seen above in the analytical computation of the Horoshenkov variance
spectrum. However, there are four different algorithms for implementing the discrete cosine
transform (DCT), which differ by how the discrete, finite-N sequence of points is assumed to
be extended outside the domain for which Czz(`r) is known. It seems that the present case
of Czz(`r), which is symmetric about `r = 0, corresponds to the “Type I” DCT discussed at
https://en.wikipedia.org/wiki/Discrete cosine transform or the “y1” extension seen in Fig.
2(a) of Makhoul (1980). The four different formulations of the DCT can be computed in
four different ways by use of FFTs. Thus the use of a DCT for the discrete Wiener-Khinchin
theorem opens a new can of worms. In any case, there is little or no penalty to be paid for
sticking with a Fourier transform evaluated by an FFT routine in order to evaluate the DFTs
as needed here. As a matter of practical necessity, the internal consistency of the spectra,
surfaces, and autocovariances seen in the preceding figures (and to be seen below) indicate
that the sampling scheme described above is correct, even it there may be equivalent ones.
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Lessons Learned

The preceding simulations illustrated the Wiener-Khinchin theorem starting with a variance
spectrum S1s(ν) (the Pierson-Moskowitz spectrum) and arriving at an autocovariance Czz(`)
in two ways. The first way was to construct the corresponding two-sided spectrum S2s(ν)
and then take the inverse Fourier transform to obtain the theoretical, noise-free Czz(`) via
the Wiener-Khinchin theorem. The second way was to use S2s(ν) to generate a large number
of random sea surfaces. The autocovariance of each random surface was computed by Eq.
(3) of the Autocovariance Functions: Theory, and then the ensemble-average autocovariance
was computed as the average of the individual autocovariances.

It is important to note that the size L of the spatial region and the number of sample
points N must be chosen with care. As a rule, L must be large enough to cover several
wavelengths of the longest wave that contains a significant amount of the total variance.
N must be large enough that the sampled points on the variance spectrum then reach far
enough into the high-frequency end of the spectrum to cover the entire part of the spectrum
that contributes a significant amount to the total variance. To see the effects of inadequate
sampling, suppose we are concerned only with the short gravity and capillary waves, which
are optically the most important because they have the highest slopes. If we are interested
only in waves of wavelength ∼ 1 m down to ∼ 1 cm, it might then seem reasonable to let
L = 10 m and N = 1024, which give ∆x ≈ 1 cm. The shortest resolvable wavelength is then
2∆x ≈ 2 cm. Figure figure2 shows an example surface and other quantities for this case.

However, now ∆ν = 1/L = 0.1 m−1 and the spectrum is sampled only at widely spaced
points (the green dots in Panel (b)) that largely miss the peak of the variance spectrum.
Consequently, the generated surface has too little variance compared to the real sea surface
described by this spectrum. Also, the sample autocovariance function, shown by the red
curve in Panel (d), computes the autocovariances only for lags up to L/2 = 5 m. This lag
range does not capture the full autocovariance features of the real surface, for which the
autocovariance is non-zero out to lags of ∼ 40 m, as shown by the green curve in Panel
(d). The spectrum estimated from the sample autocovariance (the red curve in Panel (e))
does reproduce the sampled spectrum (the green dots in Panel (b)), but this spectrum is not
representative of the real sea surface.

Picking L = 100 m, as in the previous simulations, seems adequate for a wind speed of
5m s−1. This can be seen from the leftmost red point in Panel (a) of the previous plots, which
is to the left of the spectrum maximum. However, N = 1024 then gives ∆ν = 0.01 m−1, and
the last sampled point corresponds to a shortest resolvable wavelength of 2∆x ≈ 20 cm. If
that is not adequate resolution for the problem at hand, there are two options. One option
is to increase N , which costs more computer time to evaluate the FFTs. The other option
is to adjust the spectrum in some way to account for the missing variance while keeping N
relatively small. One technique for doing such a spectrum adjustment is described on the
Numerical Resolution page.

Increasing N by a factor of 8 to N = 8192 then gives 2∆x ≈ 2.4 cm, which might be
adequate for the problem at hand. The time for an FFT is proportional to N log2N , so that
increase in N comes at a factor-of-ten increase in run time, which can be prohibitive if many
surfaces must be generated. The other option is to account for the unsampled variance in
some other way. One technique for doing that is to adjust the spectrum to account for the
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Figure 2: Example simulation with inadequate sampling of the variance spectrum.
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missing variance while keeping N relatively small. One technique for doing this is described
on the Numerical Resolution page.

These results can be summarized as follows:

• The size of the spatial domain, L, must be large enough to cover at least several
wavelengths of the wave of maximum variance. The value of L sets the fundamental
frequency ν1 = 1/L, which equals the frequency interval ∆ν.

• For the given fundamental frequency ν1, the number of spatial samples, N , must be
large enough that the highest (Nyquist) frequency, νN/2 = (N/2)∆ν covers the domain
of the variance spectrum for which the variance is non-negligible. This highest sampled
frequency must also cover the highest frequency (shortest wavelength) needed for the
problem at hand. The minimum resolvable wavelength is 2∆x = 2L/N .

Of course, the need for large L and large N comes as the cost of increased computer time.
Experimentation is necessary to determine what values are required for a particular physical
situation.
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