
The previous page showed the major features of the Fourier analysis of a sea-surface
elevation record. We started with a sample of a random sea surface and ended with the
corresponding discrete variance spectrum (or estimate of the variance spectral density after
division by the frequency interval). This page shows how to go in the reverse direction:
start with a variance spectrum and generate a random realization of the corresponding sea
surface. We first outline the theory, and then show a specific example.

Theory for 1-D Surfaces

To create a one-dimensional (1-D) slice through a sea surface, the essence of the process is
as follows:

1. Choose the domain size. To create a sea surface over a spatial domain at a given
time, we pick the length L of the region [0, L]. To generate a time series at a given
point, we pick the length of the time series.

2. Choose the number of points for the DFT. This number N is the number of
frequencies at which we will sample the variance spectrum, and equals the number of
samples of the sea surface that will be generated. In normal usage, pick N to be a
power of 2 so that an inverse FFT routine can be used to evaluate the inverse DFT.

3. Choose the frequency variable. To generate a sea surface over a spatial domain
at a given time, we can use either wavenumber ν or angular spatial frequency k. To
generate a time series at a given point, we can use either f or ω.

4. Choose a variance spectrum The variance spectrum must be expressed in terms of
the chosen frequency variable.

5. Choose the wind speed. Pick a wind speed, and perhaps other physical parameters
such as the age of the waves to be generated if required by the chosen variance spectrum.

6. Create random Hermitian amplitudes. This is the tricky part. We must create
an array of randomized discrete Hermitian Fourier amplitudes ẑ(u), starting with the
chosen continuous variance spectrum.

7. Take the inverse DFT of the random amplitudes. The inverse DFT converts
the Fourier amplitudes to the physical wave heights.

8. Extract the sea surface heights. The inverse DFT of the complex amplitudes
returns a complex array. The real part of this array is the random realization of the
sea surface heights, and the imaginary part is zero.

9. Check your results. This is extremely important during code development. For
example, take the DFT of the generated surface heights to see if you get back to the
Fourier amplitudes and variance spectrum you started with.
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We now proceed through these steps and discuss them in detail for a specific example.
Steps likesection1 and likesection2: Let us generate a sea surface over the region

from x = 0 to x = L = 100 m. The longest wavelength that can be resolved is then 100
m. We use N = 1024, which gives a spatial grid resolution of ∆x = L/N = 0.0977 m. This
means that the shortest wavelength that can be resolved, the two-point wave or Nyquist
wavelength, is 2∆x = 0.1954 m.

Step likesection3: We used wavenumber ν in the previous pages because of its easy
interpretation. Now let’s use angular spatial frequency k, which is more commonly used. The
fundamental frequency is then kf = 2π/L = 0.0628rad m−1. The highest frequency sampled,
the Nyquist frequency, is kNy = (N/2)kf = 32.15 rad m−1. Note that (2π)/kNy = 0.1954 m
which, as noted above, is the wavelength of the two-point wave.

Step likesection4: For this example, we use the Pierson-Moskowitz variance spectrum
in terms of angular spatial frequency k. This is given by Eq. (1) of the Wave Variance
Spectra: Examples page. Note that this is a one-sided spectrum, which is defined for positive
k values.

Step likesection5: The wind speed at 10 m elevation is U10 = 5 m s−1. The wind speed
is the only input to the Pierson-Moskowitz spectrum.

Step likesection6: We now discuss in detail how to generate a set of random discrete
Fourier amplitudes that are physically consistent with the chosen variance spectrum. These
amplitudes must be defined for both positive and negative frequencies, and the amplitudes
must be Hermitian. We first define

ẑo(ku) ≡ 1√
2

[ρ(ku) + iσ(ku)]

√
S1s(k = ku)

2
∆k . (1)

Here S1s(k = ku) denotes the continuous spectral density S1s(k) evaluated at k = ku. ∆k =
kf is the spatial frequency sampling interval. ẑo(ku) must be defined for both positive and
negative discrete frequencies in order to create the Hermitian amplitudes for use in the inverse
DFT. As was mentioned on the previous page, we must convert the one-sided continuous
spectrum S1s(k) into a two-sided discrete variance function by

1. dividing its magnitude by 2, assuming that S2s(−k) = S2s(k);

2. multiplying the continuous spectral density by the fundamental frequency interval ∆k,
which gives the variance contained in a finite frequency interval at each frequency ku.

To emphasize the discrete vs continuous functions, and for brevity of notation, let us write
the frequency index u for the frequency ku. Then Eq. (likesection1) becomes

ẑo(u) =
1√
2

[ρ(u) + iσ(u)]
√
S2s(u) , (2)

where S2s(u) denotes the two-sided discrete variance spectrum at frequency ku. ẑo(u) can
now be evaluated for both positive and negative ku. The 0 and Nyquist frequencies are always
special cases: set S2s(0) = 0 and S2s(kNy) = S1s(kNy). ρ(ku) ≡ ρ(u) and σ(ku) ≡ σ(u) are
independent random numbers drawn from a normal distribution with zero mean and unit
variance, denoted ρ, σ ∼ N (0, 1). A different pair is drawn for each u value.
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ẑo(u) is a random variable. Let 〈...〉 denote the expectation of the enclosed variable. The
expected value of |ẑo(u)|2, 〈ẑo(u)ẑ∗o(u)〉, gives back whatever variance function is used for
S2s(u):

〈ẑo(u)ẑ∗o(u)〉 = &
〈{ 1√

2
[ρ(u) + iσ(u)]

√
S2s(u)

}{
1√
2

[ρ(u)− iσ(u)]
√
S2s(u)

}〉
= &
S2s(u)

2

[
〈ρ2〉+ 〈σ2〉

]
= S2s(u)

because 〈ρ2〉 = 〈σ2〉 = 1 for N (0, 1) random variables. Thus ẑo(u) is consistent with the
chosen variance spectrum. However, ẑo(u) is not Hermitian, so the inverse DFT would not
give a real sea surface.

Next define ẑ(u) as

ẑ(u) ≡ 1√
2

[ẑo(u) + ẑ∗o(−u)] . (3)

This function is clearly Hermitian, so the inverse DFT applied to ẑ(u) will give a real-valued
z(xr) ≡ z(r). Moreover, this ẑ(u) is consistent with the variance spectrum:

〈|ẑ(u)|2〉 = &〈ẑ(u)ẑ∗(u)〉

= &
〈 1√

2

[
1√
2

[ρ(u) + iσ(u)]
√
S2s(u) +

1√
2

[ρ(−u)− iσ(−u)]
√
S2s(−u)

]
×

&
1√
2

[
1√
2

[ρ(u)− iσ(u)]
√
S2s(u) +

1√
2

[ρ(−u) + iσ(−u)]
√
S2s(−u)

]〉
= &

1

4

〈 [
ρ2(u)− iρ(u)σ(u) + iσ(u)ρ(u) + σ2(u)

]
S2s(u)+

& [ρ(u)ρ(−u) + iρ(u)σ(−u) + iσ(u)ρ(−u)− σ(u)σ(−u)]
√
S2s(u)

√
S2s(−u)+

& [ρ(−u)ρ(u)− iρ(−u)σ(u)− iσ(−u)ρ(u)− σ(−u)σ(u)]
√
S2s(−u)

√
S2s(u)+

&
[
ρ2(−u) + iρ(−u)σ(−u)− iσ(−u)ρ(−u) + σ2(−u)

]
S2s(−u)

〉
= &

1

2
[S2s(u) + S2s(−u)] = S2s(u) .

Here we have noted that 〈ρ(u)ρ(−u)〉 = 0, etc., because the random variables are uncorre-
lated for different u values.

Equations (likesection1) and (likesection3) are the key to generating random sea surfaces
from variance spectra. ẑ(u) defined by these equations contains random noise, which leads
to a sea surface with random amplitudes and phases for the component waves of different
frequencies. Any one of these surfaces has a variance spectrum that looks like the chosen
spectrum plus random noise. However, on average over many realizations, the the noise in
these spectra will average out, leaving the variance spectrum. Figure figure1 below illustrates
these important ideas, but first we must complete the surface generation.

Step likesection7: Compute the inverse DFT of the ẑ(u) of Eq. (likesection3). The
result is a complex function Z(x):

Z(xr) ≡ Z(r) = D−1{ẑ(u)} .
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A crucial warning to this step is that the u = 0, ..., N − 1 elements of the ẑ(u) array
must be in the FFT frequency order given by Eq. (13) of the Fourier Transforms page when
using an FFT routine to evaluate the DFT. Z(r) is returned with xr values in the order from
x0 = 0 to xN−1 = (N − 1)∆x.

Step likesection8: Extract the surface. The inverse DFT returns a complex array Z(xr)
whose real part is the surface elevations z(xr) and whose imaginary part is 0. The surface
elevations are extracted as the real part of Z(xr):

z(xr) = Re{Z(xr)} .

Step likesection9: Check the results! There are many places along the way to lose a√
2 or to mess up array indexing. At the minimum, it is worthwhile to check that the mean

of the generated surface is zero, and that the imaginary part of Z(xr) = 0 (to within a small
amount of numerical roundoff error).

When developing computer code, or when first learning this material, it is also a good
idea to take the forward DFT of Z(xr) to make sure that the input Fourier amplitudes ẑ(u)
are recovered, and that the variance spectrum corresponding to z(xr) is consistent with the
one chosen in Step likesection4. Indeed, it was the failure of this check in surfaces I was
generating using equations from the literature that led me to develop the Mobley (2016)
tutorial and these web pages.

Equations (likesection1) and (likesection3) are, with minor changes in notation, Eqs.
(42) and (43), respectively, of Tessendorf (2004). However, Tessendorf’s version of Eq.
(likesection1) appears to use a one-sided variance spectrum (his example used the one-sided
Phillips spectrum of his Eq. (40)) without the division by 2 seen in Eq. (likesection1), which
is needed to convert the one-sided spectrum to a two-sided spectrum. Nor does he show the
∆k factor needed to convert a continuous spectral density to a discrete function. His version
of Eq. (likesection3) does not contain the overall factor of 1/

√
2 seen above. These missing

factors mean that in a round-trip calculation

variance spectrum → DFT−1 → sea surface → DFT → variance spectrum ,

you do not get back to the original variance spectrum. In other words, the Tessendorf
equations do not conserve wave variance (i.e., wave energy). Even if he included the ∆k
factor in his actual computations, the missing factors of 1/

√
2 in his versions of our Eqs.

(likesection1) and (likesection3) give an overall factor one-half on the amplitudes, which
corresponds to a factor of four error in the variance. That is, waves generated using the
Tessendorf equations have amplitudes that are too large.

Tessendorf (2004) discusses much more than just Fourier transform techniques, and his
notes have been very influential in the computer graphics industry. In 2008 he deservedly
received an Academy Award for Technical Achievement for showing the movie industry how
to generate and render sea surfaces, as well as for his many other pioneering accomplish-
ments in efficiently computing and rendering fluid motions into visually appealing images.
(The first movie to use his techniques was Waterworld, followed by dozens of others in-
cluding Titanic.) When I checked with him about the missing numerical factors, he readily
acknowledged that Eqs. (likesection1) and (likesection3) are the correct ones, but pointed
out that “Hollywood doesn’t care about conservation of energy.” I suppose that should be
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no surprise, since movies seem to have no problem with rockets going faster than the speed
of light, sound propagating through the vacuum of outer space, or time travel that violates
causality. Tessendorf’s equations are widely cited (especially in the computer graphics lit-
erature), always without comment about the missing scale factors. Even if Tessendorf had
included the needed numerical factors in his equations, graphics artists would distort the
resulting images to make them look “better,” e.g., to make the ocean waves look bigger than
nature would allow. That may be acceptable in a fantasy world, but such laxness is not
permissible if we wish to use numerically generated waves to compute sea surface optical
properties.

Example: A Roundtrip Calculation

Figure figure1 shows an example of 1-D surface waves generated using the Pierson-Moskowitz
spectrum for a wind speed of 5 m/s, and the recovery of the variance spectrum from the
generated surface. The blue curve in the upper-left panel shows the Pierson-Moskowitz
spectrum as defined by Eq. (1) on page Wave Variance Spectra: Examples. The red dots
show the frequencies at which the continuous spectrum is sampled. Those dots blur together
at the higher frequencies because of the log scale, but the ku points are equally spaced at
intervals of the fundamental frequency ∆k = kf = 2π/L = 0.0628 rad/m. The last sampled
frequency is kNy = 32.17 rad/m. The bottom panel shows the sea surface elevations z(xr)
generated for a particular sequence of random numbers ρ(u), σ(u).

The red line in the upper-right panel shows the function

P(u) ≡ |ẑ(u)|2

∆k
=

1

∆k
|D{z(r)}|2 . (4)

P(u) is the discrete variance function for this particular z(xr) surface. Schuster (1898)
called P(u) a periodogram. The periodogram P(u) contains random noise because z(xr) is
a random realization of the sea surface, which was generated by applying random noise to
the the variance spectrum. This particular z(xr) is analogous to a particular measurement
of the sea surface. Had we drawn a difference sequence of random numbers for use in Eq.
(likesection2), we would have generated a different sea surface, and a different P(u). However,
we can expect that if we average together many different P(u), corresponding to many
different sets of z(xr), the noise would average out and we would be left with a curve close to
the variance spectrum we started with, which is shown in blue. Numerical experimentation
shows that averaging 100 P(u) generated from 100 independent sea surface realizations gives
an average P(u) that is almost indistinguishable from the blue curve at the scale of this plot.
Thus P(u) ≡ P(ku) is an approximation of the variance density spectrum S(k), denoted
P(ku)

.
= S(k). This averaging processes leads to the topic of spectrum estimation, which

considers such problems as how many sets of measurements of z(xr) are needed to estimate
the variance spectrum to within certain error bounds. Fortunately, we need not pursue
that here. (The noise is the upper right panel is Gaussian distributed about the theoretical
spectrum. However, the log axis makes it look asymmetric about the blue curve.)

At the minimum, you should always check to see that Parseval’s relation, Eq. (17) of the
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Figure 1: Example of a 1-D random sea surface generated from the Pierson-Moskowitz
spectrum for U10 = 5 m s−1 (the wind speed at 10 m above mean sea level). The longest
resolvable wave has wavelength L = 100 m. For N = 1024, the two-point wave has wave-
length 2L/N = 0.195 m. This is already less than the smallest wavelength (highest fre-
quency) for which the Pierson-Moskowitz spectrum should be used. Generated by IDL
routine cgFFT1D roundtrip.pro.
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Fourier Transforms page, is satisfied. For the simulation of Fig. figure1, we have

N−1∑
r=0

|z(r)|2 = N
N−1∑
u=0

|ẑ(u)|2 = 19.395 m2 .

There are sometimes other checks that can be made. For example, the Pierson-Moskowitz
spectrum is simple enough that it can be analytically integrated over all frequencies. This
gives

〈z2〉 =

∫ ∞
0

SPM(k)dk = 3.04 · 10−3
U4
10

g2
, (5)

where we have recalled that the variance spectral density is related to the variance of the
sea surface. The variance of the generated zero-mean sea surface can be computed from

var(z) =
1

N

N∑
r=0

z2(xr) (6)

and compared with the analytical expectation. For the surface seen in Fig. figure1, Eq.
(equation6) gives var{z} = 0.0189 m2 vs. the theoretical value of 〈z2〉 = 0.0197 m2 from Eq.
(equation5). This agreement to within a small amount of random noise indicates that all is
probably well with the calculations. Indeed, the average var(z)± one standard deviation for
100 independent simulations is 0.020± 0.007, which agrees well with the theoretical value.

The significant wave height H1/3 is by definition the height (trough-to-crest distance)
of the highest one-third of the waves. To a good approximation, this is related to the
expectation of the variance by

H1/3 = 4
√
〈z2〉 .

In the present example, this formula gives H1/3 = 0.55 m. The average significant wave
height for 100 simulations is 0.56 ± 0.09 (average ± one standard deviation). If you spend
enough time in a sea kayak to develop intuition about wave heights as a function of wind
speed, a half-meter height for the largest waves is about right for a 5 m s−1 or 10 knot wind
speed.

To summarize this page: we have learned how to start with a wave variance spectral
density function and generate random discrete Fourier amplitudes. The inverse DFT of
those amplitudes gives a random realization of a sea surface that is physically consistent
with the chosen variance spectrum. That is all that we can ask of the Fourier transform
technique.
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